• 제목/요약/키워드: Graded fracture toughness

검색결과 7건 처리시간 0.025초

치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구 (A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction))

  • 다네사와 미시라;유승현;정웅락
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.284-291
    • /
    • 2011
  • Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석 (Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack)

  • 알리 모하마드 압사;라셀;송정일
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 연구는 실린더 내부가 경사가능재료로 코팅된 두꺼운 벽을 가진 실린더의 겉보기 파괴인성치를 해석한 것이다. 실린더는 내부로부터 반경방향의 단일 모서리 균열이 내재되어 있으며, 균열면과 내면에는 내압을 받고 있는 것으로 가정하였다. 소결온도로부터 냉각 결과 균일한 열팽창계수로 인해 실린더에는 비적합 고유스트레인이 생성되었다. 기존의 연구에서 소개된 응력확대계수 평가법에 기초해 겉보기 파괴인성치를 계산하였다. 본 연구에서는 TiC/$Al_{2}O_{3}$ FGM 코팅된 실린더를 사용하였고 겉보기 파괴인성치의 수치적인 결과를 도식화하였다. 재료분포프로파일, 실린더 벽 두께, 적용온도와 코팅두께등이 겉보기 파괴인치에 미치는 영향이 상세히 조사되었으며, 이러한 모든 인자는 실린더의 겉보기 파괴인성치를 조절하는데 중요한 역할을 하는 것으로 밝혀졌다.

압자압입시험에 의한 이종재료 접합층의 계면인성 평가 (Evaluation of Apparent Interface Toughness of Composites Layers by Indentation Test)

  • 송준희;김학근;임재규
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2089-2095
    • /
    • 2002
  • Ceramic/metal composites have many attractive properties and great potential fur applications. Interfacial fracture properties of different layered composites are important in material integrity. Therefore, evaluation of fracture toughness at interface is required in essence. In this study, the mechanical characteristics for interface of ceramic/metal composites were investigated by indentation test of micro-hardness method. Apparent interfacial toughness of TBC system could be determined with a relation between the applied load and the length of the crack formed at the interface by indentation test.

Effects of Material Modulus on Fracture Toughness of Human Enamel, a Natural Biocomposite

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.287-293
    • /
    • 2011
  • The enamel, the upper layer of a tooth has remarkable capability of bearing severe loading on the tooth. The fracture behavior is important to understand the mechanism of load bearing and it could be very useful for developing new materials. Non-destructive evaluation of such materials will also benefit from this knowledge. The graded microstructures of enamel were modeled by finite element analysis software and the J-integrals and the stress intensity factors were evaluated as the fracture parameters. The results show that these parameters are location dependent. Those values increase when measured in the direction of dentine enamel junction. This finding matched well with experiments and implies many useful understanding of biomaterials and applications to new materials.

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • 제27권5호
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.

Al alloy와의 경계면을 포함한 A356/SiCw의 충격거동 (Impact behavior of including the boundary between A356/SiCw and Al alloy)

  • 조종인;남현욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2002
  • In this research, the impact behavior of the boundary between MMC-reinforced SiC whisker and Al alloy were studied. It is known that the resultant of the interfacial reaction between SiC whisker and Al alloy has brittle and low toughness property. In this paper, impact behavior of graded MMC & Al alloy shows the interfacial opening at the boundary. Generally this phenomenon is generated by thermal residual stress, brittle interfacial reaction resultant and difference of the deflection. So, these results may be interpreted as a macroscopic method of measuring the interfacial strength between matrix and reinforcement

  • PDF

Development of $Al_2O_3-Ni$ FGMs Produced by Spark Plasma Sintering

  • Casari, Francesco;Zadra, Mario;Girardini, Luca;Molinari, Alberto
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.87-88
    • /
    • 2006
  • Ceramic-Metal Functionally Graded Materials (FGM) are of great interest for application as Thermal Barrier Coating (TBC) or Wear Resistant Coating (WRC). Spark Plasma Sintering (SPS) is a promising techniques for time-saving consolidation of laminated/graduated powder systems: SPS is a pressure-assisted electrical sintering method which directly applies a pulsed DC current as heat source. In the present work, production of $Al_2O_3-Ni$ FGMs by means of Spark Plasma Sintering is considered; effect of sintering condition on density, hardness and fracture toughness is studied. Problems correlated to this new processing technology are discussed.

  • PDF