• Title/Summary/Keyword: Governor-turbine

Search Result 75, Processing Time 0.03 seconds

A Study on Reliability Analysis and Development of Fault Tolerant Digital Governor (내고장성 디지털 조속기의 신뢰도 평가 및 개발에 관한 연구)

  • 신명철;전일영;안병원;이성근;김윤식;진강규
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.467-474
    • /
    • 1999
  • In this paper, Fault tolerant digital governor, using duplex I/O module and triplex CPU module and also 2 out of 3 voting algorithm and adding self diagnostic ability, is designed to realize ceaseless controlling and to improve the reliability of control system. The processor module of the system(SIDG-3000) is developed based on MC68EC040 32 Bit of Motorola, which guaranteed high quality of the module ,and SRAM for data also SRAM for command are separated. The process module also includes inter process communication function and power back up function (SRAM for back-up). System reliability is estimated by using the model of Markov process. The reliability of triplex system in mission time can be improved about 1.8 times in reliability 86%. 2.8 times in 95 %, 6 times in 99 % compared with a single control system. Designed digital governor system is applied after modelling of the steam turbine generator system of Buk-Cheju Thermal Power Plant. Simulation is carried out to prove the effectiveness of the designed digital governor system

  • PDF

Load Following Operation Improvement by Governor Control Logic Modification of Thermal Power Plant (System Frequency Drop Prevention) (기력발전소 터빈조속기 제어로직 개선에 의한 발전기 부하추종성 향상 (계통주파수저하방지))

  • Lee, Jong-Ha;Kim, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.302-306
    • /
    • 2006
  • The improvement of load following operation of the thermal power plant is influenced to the electrical quality. Analysis of boiler, turbine, and governor system, and the study of control algorithm are necessarily preceded. The thermal power plant is operated by various control systems. In the case of faulty governor system, it takes long days to solve the problem and impossible to repair the mechanism without outage. A non-planned outage is taken into consideration because of economical power production. The paper introduces the followings; In case of system-frequency drop during long term, at 500MW thermal power plant, the generator output was drop. To clear this problem, the control logic is modified with analysis of trend and control algorithm. As a result system frequency drop is prevented during the long tenn and the electric grid operation is improved.

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

Modeling and Fault Simulation of Hydro Generator Control System (수력 발전기 제어설비의 모델링과 사고 시뮬레이션)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, the generator control system by using PSCAD/EMTDC was modeled and several faults simulation were performed. The generator control system is composed of generator, turbine, exciter and governor. The parameters of generator control system model were obtained from field power plant. And then, the various transient phenomena through obtained several signal of developed modeling were analyzed.

Analysis of Control Valve Characteristics in a Steam Turbine (증기터빈에서의 제어밸브에 관한 특성 고찰)

  • Yook, Sim-Kyun;Sur, Jung-Surk;Cho, Chang-Ho;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.639-642
    • /
    • 1999
  • In this paper, we are going to explain the operation principles of steam control valve, governing equation of compressible and incompressible fluids and flow characteristic according to plug(disc) types. Governor and the relation of main steam pressure to flow and main steam will also be explained.

  • PDF

Development of automatic backup systems for turbine speed signal (터빈 속도신호의 자동백업 시스템 개발)

  • Kim, Kwan-Haeng;Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.844-846
    • /
    • 1999
  • A speed signal of governor, which control the output and speed of a generator, is important because a signal failure can be causing the shutdown of a power plant. thus, it is necessary to introduce switching method with two complementary signal. This paper presents a comparative study of speed signal switching methods. One of the Proposed methods has been tested at a power plant in Pukcheju and the approach described here is expected to be of wide applicability.

  • PDF

A study on characteristic of servovalve control for steam turbine governor (증기터빈 조속기용 서보밸브 제어특성에 대한 연구)

  • Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee;Choi, In-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2263-2265
    • /
    • 2004
  • 발전소 증기터빈 밸브제어의 핵심을 이루고 있는 서보밸브 제어특성을 파악하고, 조속기 개조에 필요한 제어루프 구성방법 및 각종 제어상수를 시험을 통해 미리 파악하여 교체 적응 시에 발생될 문제점을 해결하고자 시험한 내용을 서술하고자 한다.

  • PDF

A Study on Modeling of Pumped Storage Power Plant (양수발전소의 모델링에 관한 연구)

  • Han, Yoon-Gyo;Lee, Seung-Yoon;Park, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.77-78
    • /
    • 2015
  • For the smooth operation and efficient management of pumped storage power plants, we should be understand a generator, turbine, exciter, governor, and stabilizer and prepare an abnormal accident through an accident simulation by software such as PSCAD, PSS/E. This paper investigates configuration of the generator system of ${\bigcirc}{\bigcirc}$ pumped storage power plant. And describes the modeling and fault simulation studies using PSCAD.

  • PDF

The study of Line - frequency Control in performance improvement of plant Control system. (계통주파수 제어를 위한 발전제어 특성개선)

  • Hur, Sung-Khang;Song, Seong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.114-117
    • /
    • 1987
  • This study is concerned with the improvement of the Automatic Boiler Control and Turbine Governor system to maintain line - frequency within $60{\pm}0.1\;HZ$. This describes the current problems of plant control system, the method, and equipments to be developed for each plant based on the experimental test were carried out at field, and, lastly, the results of the study with the progress of it.

  • PDF

Dynamic Study of Co-generator System Using EMTDC (EMTDC를 이용한 자가용 계통 해석)

  • Kim, H.M.;Kim, D.H.;Chun, Y.H.;Kim, J.W.;Jeon, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.295-297
    • /
    • 2001
  • This paper deals with dynamic study of co-generator system with derived dynamic models of generator, excitation system, and turbine/governor from field tests. Mainly this study concentrates on frequency control of demand users that have co-generator by under-frequency relay. We simulates dynamic study of co-generator system using EMTDC.

  • PDF