• Title/Summary/Keyword: Governor control

Search Result 151, Processing Time 0.029 seconds

Design of Sliding Hyperplanes in Nonlinear Variable Structure Systems with Uncertainties (불확실성을 갖는 비선형 가변구조시스템의 슬라이딩 초평면 설계)

  • 박동원;최승복;김재문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1985-1996
    • /
    • 1994
  • A new design method of sliding hyperplanes is proposed in the synthesis of a variable structure controller for robust tracking of general nonlinear multi-input-output(MIMO) uncertain systems of relative degree higher than two. Input/ output(I/O) linearzation is firstly undertaken by employing the concept of relative degree and minimum phase followed by the construction of sliding mode controllers. Sliding hyperplanes are then derived from the inherent properties of companion matrix and ideal sliding mode characterized in I/O linearized system. Subsequently, the gradient magnitudes of the sling hyperplanes are determined in an optimal manner by considering a quadratic performance index to be evaluated at two phases; a reaching phase and a sliding phase. The proposed design methodology is relatively straightforward and systematic compared with conventional strategies such as geometric approach or pole assignment technique. A nonlinear governor and exciter control problem for a power system is adopted herein in order to demonstrate the design efficiency and also favorable and robust control performances.

An intelligent Speed Control System for Marine Diesel Engine (선박용 디젤기관의 지능적인 속도제어시스템)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

simulation of the fuel-injection system in a diesel engine (디이젤 기관 연료분사계의 시뮬레이션)

  • 채재우;오신규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-54
    • /
    • 1985
  • Recently, the problem of exhaust gas pollution is increasingly being aggravated by the active use of the Diesel engine. For the fuel-injection system which affects the composition of exhaust gas from the Bosch type single-hole nozzle in the Diesel engine, a mathematical model was set up to study pressure variations in the high pressure pipe, the injection rate, and the needle lift. The fundamental equations of the mathematical model have been solved by the Newton Raphson Method applying the Finite Diffrence Method. The effective stroke of the injection pump plunger due to a change in engine rpm was calculated by the measurement of Control Rack, Pinion, and Plunger sizes and by the use of Characteristic Curve of Governor. The computed results for the pressure variations in the high pressure pipe and needle lift at 800 rpm and 1000 rpm are in good agreement with experimental ones in general. By a developed program, the effects of other various parameters will by calculated for the performance of the fuel-injection system.

  • PDF

Output Feedback PID based Governor Control for Power System Stabilization (전력계통 안정도 향상을 위한 Output Feedback PID 조속기 제어)

  • Jung, Won-Sik;Moon, Hyung-Jun;Jung, Chi-Hoon;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.164-165
    • /
    • 2011
  • 본 논문에서는 전력계통의 동요시 넓은 범위의 안정영역을 확보하고 발전기의 댐핑을 향상시킬 수 있는 새로운 조속기 제어기를 제안한다. 전력계통의 안정도는 대부분 고장기간 동안 발전기에 축적된 잉여 운동에너지에 크게 영향을 받기 때문에 이러한 잉여에너지에 대한 효과적인 제어는 조속기를 통해 이루어 질 수 있으며, 전력계통 안정도를 향상시킬 수 있는 가장 직접적인 방법이다. 제안된 Output Feedback 제어기는 모든 주파수 조절상수(R)에 대해 넓은 범위의 안정성을 보장하고, 미분기를 대신할 수 있도록 발전기 동요방정식을 적용한다.

  • PDF

Speed Control of a Diesel Engine Generator by a Electric Governor (전기식 조속기를 이용한 디젤 엔진 발전기의 속도 제어)

  • Lee, Seung-Hwan;Lee, Joon-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.452-454
    • /
    • 2008
  • 본 논문에서는 실험적으로 구한 엔진 토크 참조 표를 이용하여 엔진의 비선형 모델을 구하고 이를 각각의 운전 점에 대해 선형화한 엔진 모델을 제시하였다. 이러한 선형화된 엔진 모델을 이용하여, 전기식 조속기를 사용한 디젤 엔진의 속도 제어에 있어 발생하는 안정성 문제를 해석하였다. 제시한 디젤 엔진 모델을 이용하여 속도제어기의 비례, 적분 미분 이득을 설정하고 이 값을 바탕으로 모의실험 및 실험을 통하여 제시한 모델의 타당성을 검증 하였다.

  • PDF

Unified Controller for 100kVA Emergency Generator (100kV급 비상발전기용 통합제어기)

  • Jeong, C.Y.;Cho, J.G.;Baek, J.W.;Lee, J.J.;Kim, Y.J.;Yoo, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2801-2803
    • /
    • 1999
  • An unified controller for emergency generator is presented to control AVR and Governor and l00kVA power conditioner. This controller is operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage and allows the generator to maximum power even to the single phase load. Also this power conditioner allows that three phase generator synchronizes with single phase main source and load sharing. An l00kVA generator system was built and the unified controller is realized with DSP(TMS320C32PCMA). Experimental results for many load conditions are presented to verify the performance of the unified controller.

  • PDF

Analysis on transient stability for drilling rigs power system (석유 시추선 전력 계통의 과도 안정도 해석)

  • Kim, Yoon-Sik;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1119-1124
    • /
    • 2014
  • This paper describes the emergency situation which occurs in Drilling Rig power system. Especially, we focused on power system transient characteristics on propulsion motor load and generator elimination situation in Drilling Rig operation. We performed numerical simulation and analyzed the result for power system transient stability characteristics on each condition for excitation system and governor control system using ETAP (Electrical Transient Analysis Program).

Controlling an Uncertain Single Machine Infinite Bus Power System using Adaptive Passivation (불확실한 1기 무한모선 전력 계통의 수동성 기반 적응제어)

  • Kim, Seok-Kyoon;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.63-64
    • /
    • 2007
  • In this paper, an adaptive passivity based excitation and governor control scheme is proposed to enhance the transient stability of a single machine infinite bus power system with parametric uncertainties. We employ a state model where the frequency, the difference between active and mechanical power, and the difference between the squared terminal voltage and its reference are regarded as state variables. Using this state model, the proposed controller is obtained in two steps; firstly, a simple direct adaptive passivation controller is designed for the power system with parametric uncertainties; then a linear PI controller is applied to guarantee the stability of the closed loop system.

  • PDF

A Study on the Identification and Speed Control of Diesel Engines Using Neural Networks (신경회로망을 이용한 디젤기관의 동정과 속도제어에 관한 연구)

  • K-Y kim;Y-H Yu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.705-711
    • /
    • 2002
  • 디젤기관은 실린더 내경의 크기, 실린더 수 및 회전수에 따라 착화지연, 연소지연 및 디젤기관의 각종 정수가 달라지므로 비선형이 심한 시스템이다. 본 연구에서는 신경회로망을 이용하여 발전기를 구동하는 디젤 기관의 속도를 제어하는 디젤기관 신경회로망 디지털조속기를 제안한다. 이를 위하여 3상 50㎾ 발전기를 구동하는 4행정 4실린더, 1800 rpm ISUTSU 디젤기관의 실제 운전데이터로부터 뉴럴에뮬레이터를 구한다. 최적치 뉴럴에뮬레이터 구성을 위하여 다양한 역전파알고리즘으로 학습을 행하고 결과를 비교한다. 또한 디젤기관의 역으로부터 뉴럴 제어기를 구성하고 뉴럴에뮬레이터로 시뮬레이션을 행한다. 외란이 존재하는 경우에도 효과적인 뉴럴제어기를 구성하기 위하여 선택적 뉴럴제어 기의 사용을 제안한다. 또한 응답성을 향상하고 정확한 목표치추종을 위하여 PI제어기를 보조제어기로 사용하는 하이브리드제어기를 구성하여 시뮬레이션을 통하여 성능이 향상됨을 보인다.

Power System Stabilization using Self Tuning Fuzzy Controller (자기조정 퍼지제어기에 의한 전력계통 안정화에 관한 연구)

  • Chung, H.H.;Chung, D.I.;Joo, S.M.;Koh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.48-50
    • /
    • 1994
  • In this paper, the optimal fuzzy controller of exciter and governor in synchronous generator improve the stability of power system with varying loads and disturbances in power system. Parameters of the proposed fuzzy controller were optimally self-tuned by the steepest descent method and were applied to power system stabilization. The related simulation results show that the proposed control technique are more powerful than the conventional ones for reductions of undershoot and for minimization of settling time.

  • PDF