• Title/Summary/Keyword: Gouging

Search Result 30, Processing Time 0.02 seconds

The Study of Full Penetration Welding between Corrugated BHD and Lower Stool Joint by Application of CSR (CSR 적용에 따른 Corrugated BHD와 Lower Stool Joint의 Full Penetration Welding 적용에 관한 연구)

  • Park, Chan-Kyu;Yang, Jong-Soo;Kim, Ho-Kyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.135-141
    • /
    • 2007
  • CSR(Common Structure Rules) enter into force on $1^{st}$ April 2006. Generally for double hull tankers of less than 150m in length, the Rules of the individual Classification Society are to be applied. Where high tensile stresses act through an intermediate plate, increased fillet welds or penetration welds are to be used longitudinal/transverse bulkhead primary support member end connections to the double bottom. If workers have begun to make used of established procedures between corrugated BHD and lower stool joint, first to welding on groove of face and then it has to gouging to blow on groove of root. So amount of man-hour increased, productivity secreased.

  • PDF

Measurement of harmful factors occurring in Machinery and Core workshop (기계 및 중자 제조작업장에서 발생하는 유해인자의 측정)

  • 안승두;박근호
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.25-32
    • /
    • 1996
  • This study is a survey on the effect of working security and worksite environment connected to the worst case of noise and dust which was generated in the manufacturing workshop of machinery and easting. The noise intensity of the manufacturing process tends to increase up to the limited strength of 90db (A) or the higher during the last 4~5 years in 1990~1994. This result requires a significant improvement of worksite environment of unit workshop. The concentration of dust in the gouging process tends to increase to a significantly high level compared with other worksite, which also requires a local ventilation method to reduce the dust diffusion. Organic solvents used most frequently in the manufacturing process machinery were the aromatic hydrocarbons, but were gradually diversed in recent years.

  • PDF

A Feature-based Approach to Compound Surface Design (특징형상을 이용한 복합곡면의 설계)

  • Jeong, Jaehun;Kim, Kwangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • While many surfaces such as automobile outer panels, ship hulls and airfoils are characterized by their smooth, free-form shapes, a far larger class of functional surfaces are characterized by highly irregular, multi-featured shapes consisting of pockets, channels, ribs, etc. In constaract to the design of aesthetic, free-form surfaces, functional surface design can perhaps best be viewed as a process of assembling a collection of known component surfaces to form a single compound surface. In this paper, we presents a feature-based functional surface modeling method. A single feature involves a secondary surface, which we must join to a primary surface with a smooth transition between two boundary courves. Through recursive blending of a secondary surface with the primary surface, the mullti-featured surface is represented. After constructing a compound surface, we generate the Z-map for NC machining of the surface. Offsetting the Z-map using the inverse offsetting technique, we get CL tool paths with out gouging.

  • PDF

Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral (J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석)

  • Kim, Seok;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

Wear Behavior of WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay (WC-12%Co/저탄소강 MMC 용접 오버레이의 마모거동)

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.42-49
    • /
    • 2003
  • The protection of steel surfaces against wear is a practical problem far agricultural, mining and manufacturing industries. Commercial processes are available in which a hard tungsten carbides rich steel layer is formed on the surface of carbon steel digging, drilling and gouging tools to improve their wear resistance. The nature of the interaction of the tungsten carbide with the steel matrix is important in determining the wear and corrosion properties of the resulting metal matrix composites(MMC). In the study, WC-12%Co/low carbon steel MMC overlays have been prepared by gas metal arc welding(GMAW) according to size of WC-12%Co grits. The characteristics wear resistance and wear mechanism have been investigated in relation to the experiment conditions each other. After MMC overlay had been tested by rubber wheel abrasion test, it was known that MMC overlay has a excellent wear resistance. Fe$_{6}$W$_{6}$C carbides of matrix in overlays were not important to restrain rubber wheal abrasion wear. Wear loss is proportioned to a applied load according to time. On the case of low load, wear occurred severely in the matrix of overlay more than WC-12%Co grit, on the contrary it is reverse on the case of high load because of fracture of WC-12%Co grits.its.

Residual Stress and Displacement Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment (후판의 부분용입 다층용접에 대한 잔류음력 및 변형해석)

  • Kim, Seok;Bae, Sung-In;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1813-1819
    • /
    • 2001
  • Partial penetration welding Joint defines that groove welds without steel backing, welded from on side, and groove weeds welded from both sides but without back gouging, that is. it has an unwelded portion at the root of the weld. In this study we analysed fur residual stress and displacement distribution on partial penetration welding condition of thick plate metal. For 25.4mm thick plate, theoretical residual stress and displacement analysis by finite element method using ABAQUS was carried out and compared with the experimental result using hole-drilling method. In results of the condition of partial penetration, it appeared that longitudinal stress at welding area was a little difference and transverse stress did not have any effect by partial penetration multi-pass welding. From a point of welding distortion in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment (후판 부분용입 다층용접의 잔류음력 및 파괴 해석)

  • Kim, Seok;Shim, Yong-Lae;Bae, Sung-In;Song, Jung-Il
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2001
  • Partial penetration welding joint defines the groove welds that applies the one side welding which does not use steel backing and both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. As results of using above mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area was so minimal and did not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi-pass welding with 25.4mm thick plate by using theJ-integral, which finally led us the conclusion that the partial penetration multi -pass welding method is more applicable and effective in handling the root face with less than 6.35mm.

  • PDF

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

A Case Study on Explosive Demolition of Boiler Building of Steel Frame Structure (보일러동 철골구조물 발파해체 시공사례)

  • Park, Hoon;Nam, Sung-Woo;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.66-76
    • /
    • 2022
  • Recently, the demand for the dismantling of old industrial complexes has been increasing, and the construction of restoring the dismantled industries to their original natural environment is underway. In this case, the felling method was applied to the explosive demolition method to dismantle a large steel frame structure in an old industrial complex. We used a charging container to cut the steel frame structure that generates a metal jet. The thickness of the thick steel structure in the blasting section was controlled by gouging which a method of digging deep groove by gas and oxygen flame or arc thermal. As a result of the explosive demolition, the steel frame structure collapsed precisely according to the estimated direction. The explosive demolition was completed without causing any damage to the surrounding facilities.

A Case Study on Explosive Demolition of Turbine Building of Steel Frame Structure (터빈동 철골구조물 발파해체 시공사례)

  • Hoon, Park;Sung-Woo, Nam;You-Song, Noh;Chul-Gi, Suk
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.35-46
    • /
    • 2022
  • While the construction of dismantling the old industrial complex and restoring the dismantled industrial site to its original natural environment the is underway. In this paper, we introduce a case of dismantling a turbine building which one of the a large steel frame structures in an old industrial complex by applying the progressive collapse method among the blasting demolition methods. We used a charge container that generates a metal jet to cut dismantling the turbine building. The thickness of the steel structure was adjusted to 30 mm or less by applying gouging, which was a method of digging deep grooves by gas and oxygen flames or arc thermal, in the part where the cutting thickness was thick in the blasting section. The total amount of charge used for the blasting of turbine building was 175 kg, 165 electronic detonators and 124 charge containers. As a result of the blasting demolition, the turbine building was collapsed precisely according to the estimated direction. The blasting demolition was completed without causing any damage to the surrounding facilities.