• Title/Summary/Keyword: Gonadosomatic index(GSI)

Search Result 221, Processing Time 0.026 seconds

Reproductive Cycle of Seabass, Lateolabrax japonicus (농어, Lateolabrax japonicus의 생식주기)

  • Kang, Duck-Young;Han, Hyoung-Kyun;An, Cheul-Min
    • Korean Journal of Ichthyology
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2001
  • Annual reproductive cycle of seabass, Lateolabrax japonicus, was histologically investigated based on samples captured on the coast of the Tongyoung, South Korea. The gonadosomatic index (GSI) of females began to increase in October and reached its maximum in February. The GSI of males reached its maximum in December. The change of GSI and gonadal tissue showed that the annual reproductive cycle was classified into the following successive four stages: (1) the degenerative and resting stage from March to August, (2) the growth stage from September to November, (3) the mature stage from November to December, and (4) the ripe and spawning stage from December to March.

  • PDF

Sexual Maturity and Reproductive Cycle of the Common Squid Todarodes pacificus in the East Sea of Korea (한국 동해 해역에서 채집된 살오징어 (Todarodes pacificus)의 성성숙과 생식주기)

  • Baek, Hea-Ja;Kim, Jae-Won;Cho, Yun-Jung;Kim, Su-Am
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.472-479
    • /
    • 2006
  • The sexual maturity and reproductive cycle of the common squid, Todarodes pacificus captured from the East Sea, Korea, between January 2004 and January 2006, were investigated by documenting changes in the gonadosomatic index (GSI), gonad development, and oocyte size frequency distribution. The GSI of females began to increase in July, reached a maximum in August, and then gradually decreased. The GSI of males increased from July to March. Using gonad histological observations, we identified four oocyte developmental stages. The changes in GSI and gonad tissue resulted in the classification of the annual reproductive cycle into the following four successive stages: immature (April to June), growing (June to July), mature (July to August), and ripe and spawning (August to March). According to the oocyte diameter size frequency distribution in the ovary, this species appeared to have asynchronous oocyte development and one spawning time.

Comparison of the Reproductive Characteristics of Sweetfish Plecoglossus altivelis in the Main Streams of Jeju Island (제주도 주요 하천에 서식하는 은어(Plecoglossus altivelis)의 번식 특성 비교)

  • Kim, Han-Jun;Park, Chang-Beom;Lee, Young-Don;Choi, Young-Ung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.496-510
    • /
    • 2019
  • We investigated the reproductive characteristics of the sweetfish Plecoglossus altivelis, including changes in the gonadosomatic index (GSI), frequency of gonad developmental stages, and abundance of drifting larvae, in three streams (Gangjeong, Yeonoi, and Ongpo) on Jeju Island from May 2004 to December 2005. The GSI values of female P. altivelis in all Jeju streams began to increase in September and reached a maximum in October and November. Peak GSI values in males occurred in Gangjeong from October to November, in Yeonoi from November to January, and in Ongpo from September to October. The gonadal development of P. altivelis was classified into four stages: growth (March to October), maturity (September to December in females; July to December in males), spawning (September to January), and degeneration (October to March in females; after November in males). Drifting larvae were collected from October to January. These results suggest that the main spawning activity of P. altivelis in Jeju streams occurs from October to November. The information about the reproductive characteristics of P. altivelis obtained in this study is critical to fishery management for this species.

A Study on the Testicular Cycle of Korean Brown Frog (Rana coreana) (한국산개구리(Rana coreana) 정소주기에 관한 연구)

  • Shin, Jung-Min;Ko, Sun-Kun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.153-158
    • /
    • 2014
  • In order to determine the testicular cycle of the Korean brown frog, Rana coreana, the gonadosomatic index (GSI) and the changes of germ cells in testis for adult males were investigated throughout the year. The study indicated that the spermatogenesis in the seminiferous tubule of testis began in August and became most active in the month of September, and the GSI was recorded the highest and the cross area of seminiferous tubule was the widest on this period. Furthermore the seminiferous tubules at the post spawning stage appeared in testis during February, and the spermatogenesis was quiescence period of time from March to July and the GSI and the cross area of seminiferous tubule were found to be the lowest. Based on these observations, we suggest that, GSI of male Korean brown frog changes significantly between July to August, indicating the testicular cycle with discontinuous spermatogenic process, and the breeding season was confirmed to be February.

A Study on the Testicular Cycle of Asian Toad (Bufo gargarizans) (두꺼비(Bufo gargarizans) 정소주기에 관한 연구)

  • Park, Se-Hwa;Ko, Sun-Kun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.525-532
    • /
    • 2015
  • In order to determine the testicular cycle of the Asian toad, Bufo gargarizans, adult males of the species were captured around Jeongeup city (Jeollabuk-do, Korea) during March, 2012 to February, 2013 and the gonadosomatic index (GSI) and the changes of germ cells in their testes were investigated throughout the year. The study indicated that the spermatogenesis in the seminiferous tubule of testes began in April and became most active in July. The recorded GSI was the highest and the cross area of seminiferous tubule was the widest in this period. The seminiferous tubules at the post spawning stage appeared in February, the largest amounts occurred in March and primary spermatogonia also appeared in this period. The GSI and the cross area of seminiferous tubules were found to be the lowest in March, indicating a testicular cycle with potentially continuous spermatogenic process. According to the findings above, it is confirmed that testicular spermatogenesis takes place actively between April to July in male Asian toad and that their breeding season is February to March.

Reproductive Cycle of the Red Marbled Rockfish Sebastiscus tertius (붉은쏨뱅이(Sebastiscus tertius)의 생식 주기)

  • Lim, Sang-Gu;Kim, Kawang-Su;Kim, Chul-Won;Kim, Jung-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.701-708
    • /
    • 2011
  • The aim of the present study was to analyze the reductive cycle of the red marbled rockfish Sebastiscus tertius. The analysis was based on annual changes in the gonadosomatic index (GSI), the hepatosomatic index (HSI), histology of the gonadal structure, and plasma sex steroid hormone levels of adult fish from April 1997 to April 1998. GSI of females began to increase in February and peaked ($10.8{\pm}2.72$) in May. HIS levels ($3.41{\pm}0.49$) peaked in February and elevated plasma steroid hormones ($1.47{\pm}0.75$ ng/mL for estradiol-$17{\beta}$ ($E_2$) and $230.7{\pm}27.6$ pg/mL for testosterone (T)) were observed in April. However, in male fish, GSI levels started to increase in August and remained high until November ($0.21{\pm}0.05$). T levels were was also elevated in August and peaked in October ($188.1{\pm}43.5$ pg/mL) and November ($186.8{\pm}28.0$ pg/mL), but started to decline 1 month than the GSI. These results suggest that female ovoviviparious periods span from April to June and amle mating periods occur from November to February.

The Annual Reproductive Cycle of Silurus microdorsalis, a Korean Endemic Species

  • KI, Se-Un;LEE, Won-Kyo
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The annual reproductive cycle of the Korean endemic slender catfish, Silurus microdorsalis, was examined histologically regarding water temperature and day length of habitat, gonadosomatic index (GSI), and development characteristics of female and male gonads. The maximum GSI value was found in May, $1.23{\pm}0.33$ and $11.77{\pm}3.23$ for male and female respectively (habitat water temperature $21.5^{\circ}C/13.59hr$ day length). On the other hand, the minimal level was $0.63{\pm}0.10$ in July ($26.5^{\circ}C/14.17$) for male and $1.36{\pm}0.08$ in October ($20^{\circ}C/11.2hr$) for female. We compared and calculated the stages of testis and ovary development process in order to determine the germ cell development characteristics and the reproductive cycle. According to results, we classified the annual reproductive cycle of the slender catfish into five stages: Growing phase (December-February), Mature phase (March-April), Ripe and spawning phase / Releasing phase in male (May-June), Degenerative phase (July-August), and Resting phase (September-November).

Reproductive Cycles of Moroco oxycephalus and M. lagowskii in Korea (한국산 버들치와 버들개의 생식 주기에 관한 연구)

  • Kang, Young-Jin;Min, Mi-Sook
    • Korean Journal of Ichthyology
    • /
    • v.11 no.2
    • /
    • pp.117-125
    • /
    • 1999
  • We investigated the reproductive cycles of two freshwater fishes, Moroco oxycephalus and M. lagowskii, in Korea. Seasonal changes in gonadosomatic index (GSI) and gonads were investigated histologically from April 1998 to April 1999. The reproductive cycles of two species were not shown any differences. The reproductive cycle can be divided into 5 phases : phase I (spent phase), phase II (immature phase), phase III (early developing phase), phase IV (late developing phase), and phase V (ripe phase). In phase I, the gonads of two species began to lose distinctly their weights from mid April, and reached the lowest GSI in late July (phase II). In September, the GSI values of testis and ovary increased very slowly (phase III) and gonadal developments rested during the winter season (phase IV). In March, the GSI values of M. oxycephalus and M. lagowskii began to increase, and reached the maximum in April (phase V). From the cyclic changes in the GSI and histological analyses, the spawning period was between mid April and mid May.

  • PDF

Annual Reproductive Cycle of Acheilognathus majusculus, a Korean Endemic Species

  • Lim, Jin-Yeong;Lee, Won-Kyo
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.297-305
    • /
    • 2017
  • An experiment was conducted to investigate the annual reproductive cycle of a Korean endemic species, Acheilognathus majusculus, from Jeokseong-myeon located in Seomjin River. The reproductive cycle is examined histologically regarding water temperature and day length of the habitat, the gonadosomatic index (GSI), the female ovipositor length index (OLI), monthly variation in egg diameter distribution, and developmental characteristics of female and male gonads. The maximum GSI was found in $19.21{\pm}2.32$ and $6.90{\pm}0.53$ for female and male respectively when water temperature ($14^{\circ}C$) and day length (11.1hr) began to rise. On the other hand, the minimum level was reached during August ($1.87{\pm}0.67$ for female and $0.88{\pm}0.50$ for male). No samples represent with measurable ovipositor between September and November, while the longest ovipositor length index was in April ($79.68{\pm}4.69%$). We compared and calculated the stages of testis and ovary development process in order to determine the germ cell development characteristics and the reproductive cycle. According to the result, we classified the female Acheilognathus majusculus reproductive cycle into four stages: Ripe (April) and spawning phase (May to June), degenerative phase (July), growing phase (August to December), and mature phase (January to March). The annual reproductive cycle of male Acheilognathus majusculus was categorized into five stages viz. Ripe and spawning phase (May to June), degenerative phase (July to August), resting phase (September to November), growing phase (December to February), and mature phase (March to April).

Reproductive Cycle of the Korean Perch, Coreoperca herzi (Perciformes: Centropomidae) (한국산 꺽지 Coreoperca herzi (농어목 꺽지과)의 생식주기)

  • Lim, Sang-Koo;Kim, Gye-Won;Chung, Gyu-Hwa;Han, Chang-Hee;Kang, Ki-Young;Kim, Jung-Woo
    • Korean Journal of Ichthyology
    • /
    • v.23 no.4
    • /
    • pp.261-268
    • /
    • 2011
  • To clarify the annual reproductive cycle of the Korean perch, Coreoperca herzi, the seasonal changes in gonadosomatic index (GSI), hepatosomatic index (HSI), histological aspects of gonad and liver, and plasma levels of sex steroid hormones were investigated from June 1994 to April 1996. The annual variations of GSI and HSI were positively related to the plasma levels of sex steroid hormones. Estradiol-$17{\beta}$ (E2) and testosterone levels were raised during the April to May. Based on the related results, annual reproductive cycle of the fish could be divided into five successive stages; 1) Growing stage (from February to March: GSI was increased rapidly and oocytes with yolk vesicle was increased. Nucleus migrates toward the animal pole. Spermatids were activated from the epithelial tissue of lobuli). 2) Maturation and spawning stage (from April to June: Oocytes were accumulated yolk globules. Active spermatogenesis was observed). 3) Degeneration or stagnation phase (from July to August). 4) Recovery phase (from September to November) and 5) resting phase (from December to January). The main spawning period was in May.