Current software reliability growth models based on Gompertz growth curve are all logarithmic type. Software reliability growth models based on logarithmic type Gompertz growth curve has difficulties in parameter estimation. Therefore this paper proposes a software reliability growth model based on the logistic type Gompertz growth curie. Its usefulness is empirically verified by analyzing the failure data sets obtained from 13 different software projects. The parameters of model are estimated by linear regression through variable transformation or Virene's method. The proposed model is compared with respect to the average relative prediction error criterion. Experimental results show that the pro-posed model performs better the models based on the logarithmic type Gompertz growth curve.
The aim of this study was to describe growth patterns of mice using Gompertz model. Two distinct types of mice, laboratory mouse $CF_{\sharp1}$ (Mus musculus domesticus) and Yonakuni wild mouse (Yk, Mus musculus molossinus yonakuni) were used. From all possible crosses, there were two parental types and two reciprocal $F_1$ crosses obtained. Individual body weights were measured weekly from birth to ten weeks of age on 321 mice. Standardization to six mice was conducted and only first litters were used. Growth curve parameters were estimated to fit growth data. The results showed that growth among genetic groups were significantly different (p < 0.05) for both sexes, in which parental type of $CF_{\sharp1}$ and Yk had the highest and the smallest values, respectively. Meanwhile, reciprocal $F_1$ crosses were intermediate between parental types. It was concluded that Gompertz model provided and excellent fit for the growth data with a high coefficient determination $(R^2 = 0.999)$.
This paper evaluates software cost estimation models, and presents the most suitable model. First, we transformed a relevant model into variables to make in linear. Second, we evaluated model's performance considering how much suitable the cost data of the actual development software was. In the stage of model performance evaluation criteria, we used MMRE which is the relative error concept rather than the absolute error. Existing software cost estimation model follows Weibull, Gamma, and Rayleigh function. In this paper, Gompertz function model is suggested which is a kind of growth curve. Additionally, we verify the compatability of other different growth curves. As a result of evaluation of model's performance, Gompertz function was considered to be the most suitable for the cost estimation model.
Communications for Statistical Applications and Methods
/
v.21
no.6
/
pp.521-528
/
2014
A stochastic Gompertz diffusion model for tumor growth is a topic of active interest as cancer is a leading cause of death in Korea. The direct maximum likelihood estimation of stochastic differential equations would be possible based on the continuous path likelihood on condition that a continuous sample path of the process is recorded over the interval. This likelihood is useful in providing a basis for the so-called continuous record or infill likelihood function and infill asymptotic. In practice, we do not have fully continuous data except a few special cases. As a result, the exact ML method is not applicable. In this paper we proposed a method of parameter estimation of stochastic Gompertz differential equation via Markov chain Monte Carlo methods that is applicable for several data structures. We compared a Markov transition data structure with a data structure that have an initial point.
Journal of Korea Society of Digital Industry and Information Management
/
v.10
no.2
/
pp.29-36
/
2014
Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.
Journal of the Korean Society of Industry Convergence
/
v.20
no.5
/
pp.395-404
/
2017
Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.
Journal of The Korean Society of Agricultural Engineers
/
v.52
no.6
/
pp.19-26
/
2010
Batch experiments were conducted to investigate growth and nutrient removal performance of microalgae Chlorella vulgaris by using piggery wastewater in different concentration of pollutants and the common growth models (logistic, Gompertz and Richards) were applied to compare microalgal growth parameters. Removal of nitrogen (N) and phosphorus (P) by Chlorella vulgaris showed correlation with biomass increase, implying nutrient uptake coupled with microalgae growth. The higher the levels of suspended solids (SS), COD and ammonia nitrogen were in the wastewater, the worse growth of Chlorella vulgaris was observed, showing the occurrence of growth inhibition in higher concentration of those pollutants. The growth parameters were estimated by non-linear regression of three growth curves for comparative analyses. Determination of growth parameters were more accurate with population as a variable than the logarithm of population in terms of R square. Richards model represented better fit comparing with logistic and Gompertz model. However, Richards model showed some complexity and sensitivity in calculation. In the cases tested, both logistic and Gompertz equation were proper to describe the growth of microalgae on piggery wastewater as well as easy to application.
In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.
Model was developed to predict the growth of Listeria monocytogenes in raw pork. Experiment condition for model development was full 5-by-7 factorial arrangements of temperature (0, 5, 10, 15, and $20^{\circ}C$) and time (0, 1, 2, 3, 18, 48, and 120 hr). Gompertz values A, C, B, and M, and growth kinetics, exponential growth rate (EGR), generation time (GT), lag phase duration (LPD), and maximum population density (MPD) were calculated based on growth increased data. GT and LPD values gradually decreased, whereas EGR value gradually increased with increasing temperature. Response surface analysis (RSA) was carried out using Gompertz B and M values, to formulate equation with temperature being main control factor. This equation was applied to Gompertz equation. Experimental and predictive values for GT, LPD, and EGR, compared using the model, showed no significant differences (p<0.01). Proposed model could be used to predict growth of microorganisms for exposure assessment of MRA, thereby allowing more informed decision-making on potential regulatory actions of microorganisms in raw pork.
A total of 6,973 steer growth records of Hanwoo breeding bull's progeny test data collected from 1989 to 2015 were analyzed to identify the most appropriate growth curve among three growth curve models (Gompertz, Logistic and von Bertalanffy). The Gompertz growth curve model equation was $W_t=990.5e^{{-2.7479e}^{-0.00241t}}$, the Logistic growth curve model equation was $W_t=772(1+8.3314e^{-0.00475t})^{-1}$, and the von Bertalanffy growth curve model equation was $W_t=1,196.4(1-0.646e^{-0.00162t})^3$. The Gompertz model parameters A, b, and k were estimated to be $990.5{\pm}10.27$, $2.7479{\pm}0.0068$, and $0.00241{\pm}0.000028$, respectively. The inflection point age was estimated to be 421 days and the weight of inflection point was 365.3 kg. The Logistic model parameters A, b, and k were estimated to be $772.0{\pm}4.12$, $8.3314{\pm}0.0453$, and $0.00475{\pm}0.000033$, respectively. The inflection point age was estimated to be 445 days and the weight of inflection point was 385.0 kg. The von Bertalanffy model parameters A, b, and k were estimated to be $1196.4{\pm}18.39$, $0.646{\pm}0.0010$, and $0.00162{\pm}0.000027$, respectively. The inflection point age was estimated to be 405 days and the weight of inflection point was 352.0 kg. Mature body weight of the von Bertalanffy model was 1196.4 kg, the Gompertz model was 990.5 kg, and the Logistic model was 772.0 kg. The difference between actual and estimated weights was similar in the Logistic model and the von Bertalanffy model. The difference between market weight and estimated market weight was the lowest in the Gompertz model. The growth curve using the von Bertalanffy model showed the lowest mean square error.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.