Abstract
The aim of this study was to describe growth patterns of mice using Gompertz model. Two distinct types of mice, laboratory mouse $CF_{\sharp1}$ (Mus musculus domesticus) and Yonakuni wild mouse (Yk, Mus musculus molossinus yonakuni) were used. From all possible crosses, there were two parental types and two reciprocal $F_1$ crosses obtained. Individual body weights were measured weekly from birth to ten weeks of age on 321 mice. Standardization to six mice was conducted and only first litters were used. Growth curve parameters were estimated to fit growth data. The results showed that growth among genetic groups were significantly different (p < 0.05) for both sexes, in which parental type of $CF_{\sharp1}$ and Yk had the highest and the smallest values, respectively. Meanwhile, reciprocal $F_1$ crosses were intermediate between parental types. It was concluded that Gompertz model provided and excellent fit for the growth data with a high coefficient determination $(R^2 = 0.999)$.