• Title/Summary/Keyword: Gold nanoparticles modified carbon paste electrode

Search Result 2, Processing Time 0.035 seconds

Nanogold-modified Carbon Paste Electrode for the Determination of Atenolol in Pharmaceutical Formulations and Urine by Voltammetric Methods

  • Behpour, M.;Honarmand, E.;Ghoreishi, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.845-849
    • /
    • 2010
  • A gold nanoparticles modified carbon paste electrode (GN-CPE) has been used for the determination of atenolol (ATN) in drug formulations by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronocoulometric methods. The results revealed that the modified electrode shows an electrocatalytic activity toward the anodic oxidation of atenolol by a marked enhancement in the current response in buffered solution at pH 10.0. The anodic peak potential shifts by -80.0 mV when compared with the potential using bare carbon paste electrde. A linear analytical curve was observed in the range of $1.96\;{\times}\;10^{-6}$ to $9.09\;{\times}\;10^{-4}\;mol\;L^{-1}$. The detection limit for this method is $7.3\;{\times}\;10^{-8}\;mol\;L^{-1}$. The method was then successfully applied to the determination of atenolol in tablets and human urine. The percent recoveries in urine ranged from 92.0 to 110.0%.

A glucose biosensor based on deposition of glucose oxidase onto Au nanoparticles poly(maleic anhydride)-grafted multiwalled carbon nanotube electrode (금 나노입자/폴리(maleic anhydride) 그래프트 탄소나노튜브에 글루코스 옥시다아제 담지를 기반으로 한 글루코스 바이오센서)

  • Piao, Ming-Hua;Son, Pyeong-Soo;Chang, Choo-Hwan;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • Glucose oxidase ($GOD_{ox}$) immobilized biosensor was fabricated by two methods. In one of the methods, gold nanoparticles (Au-NPs) prepared by ${\gamma}$-irradiation were loaded into the poly(maleic anhydride)-grafted multi-walled carbon nanotube, PMAn-g-MWCNT electrode via physical entrapment. In the other method, the Au-NPs were prepared by electrochemical reduction of Au ions on the surface of PMAn-g-MWCNT electrode and then GODox was immobilized into the Au-NPs. The $GOD_{ox}$ immobilized biosensors were tested for electrocatalytic activities to sense glucose. The sensing range of the biosensor based on the Au-NPs physically modified PMAn-g-MWCNT electrode was from $30\;{\mu}M$ to $100\;{\mu}M$ for the glucose concentration, and the detection limit was $15\;{\mu}M$. Interferences of ascorbic acid and uric acid were below 7.6%. The physically Au deposited PMAn-g-MWCNT paste electrodes appear to be good sensor in detecting glucose.