DOI QR코드

DOI QR Code

Nanogold-modified Carbon Paste Electrode for the Determination of Atenolol in Pharmaceutical Formulations and Urine by Voltammetric Methods

  • Behpour, M. (Department of Chemistry, Faculty of Science, University of Kashan) ;
  • Honarmand, E. (Department of Chemistry, Faculty of Science, University of Kashan) ;
  • Ghoreishi, S.M. (Department of Chemistry, Faculty of Science, University of Kashan)
  • Published : 2010.04.20

Abstract

A gold nanoparticles modified carbon paste electrode (GN-CPE) has been used for the determination of atenolol (ATN) in drug formulations by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronocoulometric methods. The results revealed that the modified electrode shows an electrocatalytic activity toward the anodic oxidation of atenolol by a marked enhancement in the current response in buffered solution at pH 10.0. The anodic peak potential shifts by -80.0 mV when compared with the potential using bare carbon paste electrde. A linear analytical curve was observed in the range of $1.96\;{\times}\;10^{-6}$ to $9.09\;{\times}\;10^{-4}\;mol\;L^{-1}$. The detection limit for this method is $7.3\;{\times}\;10^{-8}\;mol\;L^{-1}$. The method was then successfully applied to the determination of atenolol in tablets and human urine. The percent recoveries in urine ranged from 92.0 to 110.0%.

Keywords

References

  1. Marko, V. Determination of ${\beta}$-Blockers in Biological Material, Part C; Elsevier: Amesterdam, 1989.
  2. Wadworth, A. N.; Murdoch, D.; Brogden, R. N. Drugs 1991, 42,468. https://doi.org/10.2165/00003495-199142030-00007
  3. Siren, H.; Saarinen, M.; Hainari, S.; Lukkari, P.; Riekkola, M. L.J. Chromatogr. A 1993, 632, 215. https://doi.org/10.1016/0021-9673(93)80047-C
  4. Vetuschi, C.; Ragno, G. Int. J. Pharm. 1990, 65, 177. https://doi.org/10.1016/0378-5173(90)90141-P
  5. Umapathi, P. Int. J. Pharm. 1994, 108, 11. https://doi.org/10.1016/0378-5173(94)90411-1
  6. Gajewska, M.; Glass, G.; Kostelecki, J. Acta Pol. Pharm. 1992,49, 1.
  7. Arias, R.; Jimenez, R. M.; Alonso, R. M.; Telez, M.; Arrieta, I.;Flores, P.; Ortiz-Lastra, E. J. Chromatogr. A 2001, 916, 297. https://doi.org/10.1016/S0021-9673(01)00564-7
  8. Ervik, M.; Kylberg-Hanssen, K.; Lagerström, P. J. Chromatogr. B Biomed. Sci. Appl. 1980, 182, 341. https://doi.org/10.1016/S0378-4347(00)81483-8
  9. Sasa, S. I.; Jalal, I. M.; Khalil, H. S. J. Liq. Chromatogr. 1988, 11,1673. https://doi.org/10.1080/01483918808076729
  10. Keech, A. C.; Harrison, P. M.; Mclean, A. J. J. Chromatogr. B Biomed. Sci. Appl. 1988, 426, 234. https://doi.org/10.1016/S0378-4347(00)81950-7
  11. Leloux, M. S.; Dost, F. Chromatographia 1991, 32, 429. https://doi.org/10.1007/BF02327973
  12. Black, S. B.; Stenhouse, A. M.; Hansson, R. C. J. Chromatogr. B Biomed. Sci. Appl. 1996, 685, 67. https://doi.org/10.1016/0378-4347(96)00140-5
  13. Toyooka, T.; Torium, M.; Ishii, Y. J. Pharma. Biomed. Anal. 1997,15, 1467. https://doi.org/10.1016/S0731-7085(96)02026-2
  14. Goyal, R. N.; Singh, S. P. Talanta 2006, 69, 932. https://doi.org/10.1016/j.talanta.2005.11.041
  15. Griese, S.; Kampouris, D. K.; Kadara, R. O.; Banks, C. E. Electrochem. Commun. 2008, 10, 1633. https://doi.org/10.1016/j.elecom.2008.08.021
  16. Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Electrochem. Commun. 2006, 8, 65. https://doi.org/10.1016/j.elecom.2005.10.011
  17. Cervini, P.; Ramos, L. A.; Cavalheiro, E. T. G. Talanta 2007, 72,206. https://doi.org/10.1016/j.talanta.2006.10.017
  18. Cervini, P.; Cavalheiro, E. T. G. Anal. Lett. 2008, 41, 1867. https://doi.org/10.1080/00032710802162152
  19. Arvand, M.; Vejdani, M.; Moghimi, M. Desalination 2008, 225,176. https://doi.org/10.1016/j.desal.2007.06.017
  20. Tang, D.; Yuan, R.; Chai, Y.; Liu, Y.; Dai, J.; Zhong, X. Anal. Bioanal. Chem. 2005, 381, 674. https://doi.org/10.1007/s00216-004-2916-3
  21. Martínez, V.; Maguregui, M. I.; Jimenez, R. M.; Alonso, R. M. J.Pharm. Biomed. Anal. 2000, 23, 459. https://doi.org/10.1016/S0731-7085(00)00324-1
  22. Bard, A. J; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980.
  23. Wang, B. C.; Cao, X. Q. J. Electroanal. Chem. 1991, 309, 147. https://doi.org/10.1016/0022-0728(91)87010-2

Cited by

  1. Gold Nanoparticles in Chemical and Biological Sensing vol.112, pp.5, 2012, https://doi.org/10.1021/cr2001178
  2. Central composite rotatable design in the development of a new method for optimization, voltammetric determination and electrochemical behavior of betaxolol in the presence of acetaminophen based on a gold nanoparticle modified electrode vol.4, pp.8, 2012, https://doi.org/10.1039/c2ay25268f
  3. Interaction of atenolol with iodine: a novel structural formula of charge transfer complexes vol.10, pp.5, 2013, https://doi.org/10.1007/s13738-013-0225-5
  4. Computational assisted electrochemical studies for 1,4-diazabicyclo[2,2,2]octane determination at multiwalled carbon nanotube paste electrode vol.53, pp.5, 2017, https://doi.org/10.1134/S102319351705010X
  5. Amino Functionalized Graphene Oxide and Polymer Nanocomposite Based Electrochemical Platform for Sensitive Assay of Anti-Doping Drug Atenolol in Biological Fluids vol.163, pp.13, 2016, https://doi.org/10.1149/2.0281613jes
  6. Electrochemical investigation of atenolol oxidation and detection by using a multicomponent nanostructural assembly of amino acids and gold nanoparticles vol.504, pp.1, 2011, https://doi.org/10.1016/j.cplett.2011.01.051
  7. Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles vol.58, pp.None, 2010, https://doi.org/10.1016/j.electacta.2011.09.055
  8. Magnetic nanoparticles incorporated on functionalized mesoporous silica: an advanced electrochemical sensor for simultaneous determination of amiodarone and atenolol vol.4, pp.9, 2010, https://doi.org/10.1039/c3ra45433a
  9. Voltammetric/amperometric screening of compounds of pharmacological interest vol.33, pp.3, 2010, https://doi.org/10.1515/revac-2013-0027
  10. Voltammetric/amperometric screening of compounds of pharmacological interest vol.33, pp.3, 2010, https://doi.org/10.1515/revac-2013-0027
  11. Application of Electrochemical Techniques at a Nanostructure-Based Modified Sensor for Analyte Quantitation vol.46, pp.7, 2010, https://doi.org/10.1080/15533174.2014.989621
  12. Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War vol.8, pp.1, 2017, https://doi.org/10.5229/jecst.2017.8.1.43
  13. Square wave voltammetric quantification of folic acid, uric acid and ascorbic acid in biological matrix vol.7, pp.2, 2010, https://doi.org/10.1016/j.jpha.2017.01.002