• Title/Summary/Keyword: Gold nano particles

Search Result 33, Processing Time 0.032 seconds

The Effects of Concentration of HAuCl4 Solution and UV Irradiation Time on Generation of Nano Gold Particles (나노 금 입자생성에 HAuCl4 용액의 농도와 UV 조사시간이 미치는 영향)

  • An, Jeong-Min;Lee, Chang-Whan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.39-45
    • /
    • 2009
  • The importance of nano gold particles has been increased in the field of bio physics and medicine, recently. In this regard, the study aims to analyze how the harmless nano gold particles can be transformed by respective variables. In this study, electrospun PU nano-webs were impregnated with aqueous $HAuCl_4$ solution and UV light was irradiated on the webs. Au-ions were reduced to nano particles by photocatalytic reduction and these nano gold particles were characterized by SEM, UV-vis, Zetasizer, Spectrophotometer, EDS. $HAuCl_4$ solution concentration and UV irradiation time have heen examined to change the amount of absorption. Nano gold particles size and UV-Vis absorbances were increased with $HAuCl_4$ solution concentration and UV irradiation time.

STUDIES FOR THE CHARACTER OF NANO-SIZED $TiO_2$ PARTICLE SYNTHESIZED BY MICRO-EMULSION METHOD AND GOLD-DEPOSITED $TiO_2$ PARTICLE

  • Jhun, Hyun-Pyo;Park, Jae-Kiel;Lee, Kyoung-Chul;Park, Jae-Eon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.52-69
    • /
    • 1996
  • Nano-Sized TiO$_2$ particles with diameter between 2 and 5 nm are synthesized in Water/Triton X-100/n-Hexane microemulsion. Particles show the amorphous structure and partially hydroxide form. The optical absorbance of particles appears at 250nm and band edge at 340nm. Gold metal is deposited on the surface of TiO$_2$ particles by reduction reaction of Au(III) ion with sodium hypophosphite. The size of gold-deposited particles is 20nm, and the optical absorbance appears at 270nm and at 550nm. So particles show the red color. The dense precipitation is formed by aggregation in the TiO$_2$ nano-sized particles of about 5nm size. But the bulky precipitation is formed by agglomeration phenomena in the gold-deposited particles of 20nm size. And also gold-deposited particles is easily dispersed by being re-dispersed in PEG/Water solution. This study has compared those things measuring the SPF characteristics of the cosmetics made of the synthesized particles. If the particle size is controlled appropriately, then the SPF value will be higher, or more colorless cosmetics will be made.

  • PDF

Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering

  • Lim, Jae-Wook;Kang, Ik-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.237-242
    • /
    • 2013
  • This experiment was conducted for the purpose of developing such a sensor that can quickly sense dopamine concentration by using chitosan-gold nanoshell. Chitosan nano particles were reacted with gold nano particles so as to synthesize chitosan-gold nanoshell, and the size of the synthesized product was about 150 nm. When dopamine was reacted with chitosan-gold nanoshell, the size of it was not definitely changed, but dopamine was well reacted with chitosan-gold nanoshell, and it generated SERS (surface-enhanced Raman scattering), which led to a clear difference in the intensity of Raman scattering within the range of dopamine concentration (1 mM-10 mM). When Raman scattering was intensity marked on chitosan-gold nanoshell by employing a calibration curve according to dopamine concentration, a straight line whose margin of error was narrow was earned.

Characterization of gold nanoparticles on optical fiber for localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금 나노 입자 특성 분석)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2009
  • In this study, the optical properties of localized surface plasmon resonance sensor using optical fiber was analyzed as the variation of a size and surface density of gold nano particles on the etched optical fiber surface. It is shown that a size and surface density of gold nano particles on optical fiber surface are controlled by $Na_3$ citrate quantity and pH of gold colloid solution. To measure the sensitivity, peak wavelength of absorbance spectrum was detected as the reflective index of the solution. The sensor sensitivity is linearly dependent on the size and surface densities of gold nano particles from the results of optical experiments.

Nano-Scale Patterning by Gold Self-Assembly on PS-PB-PS Triblock Copolymer Thin Film Templates (PS-PB-PS 삼블럭 공중합체 박막형판에서의 금의 자기응집에 의한 Nano-Scale 패턴형성)

  • Kim, G.;Libera, M.
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This paper describes how the gold particles self assemble on the specific phase on the microphase separated block copolymer thin film and form a well ordered patterns. For this study, polystyrene-polybutadiene-polystyrene (PS-PB-PS) triblock copolymer (30wt % PS) thin films (${\sim}100nm$) having a cylindrical morphology were cast from 0.1wt% toluene solution to be used as polymer thin film templates. The films having either vertical PS cylinders or in-plane PS cylinders in PB matrix from each different solvent evaporation condition were obtained. Cross-sectional transmission electron microscopy(TEM) was used to study the surface and bulk morphologies of block copolymer thin films. Small amount of gold particles was evaporated on a block copolymer thin film template to obtain a nano-scale pattern. When an as-cast thin film template was used, gold particles preferentially self assemble on the low surface tension PB phase and a relatively well ordered pattern in nano-scale was produced. However, after the formation of a low surface energy PB rich layer upon annealing, a gold self-assembled pattern was not observed.

  • PDF

Fabrication of a PDMS (Poly-Dimethylsiloxane) Stamp Using Nano-Replication Printing Process (나노 복화(複畵)공정을 이용한 PDMS 스탬프 제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Kong, Hong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.999-1005
    • /
    • 2004
  • A new stamp fabrication technique for the soft lithography has been developed in the range of several microns by means of a nano-replication printing (nRP) process. In the nRP process, a figure or a pattern can be replicated directly from a two-tone bitmap figure with nano-scale details. A photopolymerizable resin was polymerized by the two-photon absorption which was induced by a femtosecond laser. After the polymerization of master patterns, a gold metal layer (about 30 ㎚ thickness) was deposited on the fabricated master patterns for the purpose of preventing a join between the patterns and the PDMS, then the master patterns were transferred in order to fabricate a stamp by using the PDMS (poly-dimethylsiloxane). In the transferring process, a few of gold particles, which were isolated from the master patterns, remained on the PDMS stamp. A gold selective etchant, the potassium iodine (KI) was employed to remove the needless gold particles without any damage to the PDMS stamp. Through this work, the effectiveness of the nRP process with the PDMS molding was evaluated to make the PDMS stamp with the resolution of around 200 ㎚.

Two-Dimensional Arrays of Gold Nanoparticles for Plasmonic Nanosensor

  • Sim, Brandon;Monjaraz, Fernando;Lee, Yong-Joong;Park, So-Yeun
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.525-531
    • /
    • 2011
  • Two dimensional (2D) arrays of noble metal nanoparticles are widely used in the sensing of nanoscale biological and chemical events. Research in this area has sparked considerable interest in many fields owing to the novel optical properties, e.g., the localized surface plasmon resonance, of these metallic nanoarrays. In this paper, we report successes in fabricating 2D arrays of gold nano-islands using nanosphere lithography. The reproducibility and the effectiveness of the nano-patterning method are tested by means of spin coating and capillary force deposition. We found that the capillary force deposition method was more effective for nanospheres with diameters greater than 600 nm, whereas the spin coating method works better for nanospheres with diameters less than 600 nm. The optimal deposition parameters for both methods were reported, showing about 80% reproducibility. In addition, we characterize gold nano-island arrays both geometrically with AFM as well as optically with UV-VIS spectrometry. The AFM images revealed that the obtained nano-arrays formed a hexagonal pattern of truncated tetrahedron nano-islands. The experimental and theoretical values of the geometric parameters were compared. The 2D gold nano-arrays showed strong LSPR in the absorption spectra. As the nano-islands increased in size, the LSPR absorption bands became red-shifted. Linear dependence of the plasmon absorption maximum on the size of the gold nano-islands was identified through the increment in the plasmon absorption maximum rate for a one nanometer increase in the characteristic length of the nano-islands. We found that the 2D gold nano-arrays showed nearly seven-fold higher sensitivity of the absorption spectrum to the size of the nano-islands as compared to colloidal gold nano-particles.

Formation of metal nano particles on optical fiber for fiber optic localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금속 나노 입자 형성)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • Various etching methods of optical fiber and formation of metal nano particles on the optical fiber have been proposed for fabrication of fiber optic localized surface plasmon resonance (FO LSPR) biosensors. Different types of etched optical fiber are possible by removing the cladding of optical fiber using HF (hydrofluoric acid) solution and BHF (buffered hydrofluoric acid) solution, which results in improved surface roughness when BHF solution is used. Localized surface plasmon can be formed and measured by formation of silver and gold nano particles on the etched optical fiber. The characteristics of the etched optical fiber and metal nano particles on the etched surface of the optical fiber play a key role in dictating the sensitivity of the LSPR sensors, so that the proposed results can be expected to be applied for related research on fiber optic based biosensors.

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.