• Title/Summary/Keyword: Gold Surface

Search Result 811, Processing Time 0.022 seconds

THE EFFECT OF GOLD ELECTROFORMING PROCEDURE ON GOLD-SILVER-PALLADIUM ALLOY

  • Hwang, Bo-Yeon;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.303-309
    • /
    • 2007
  • Statement of problem. The effect of gold electroforming on gold alloy was not studied. Purpose. This in vitro study investigate the effect of gold electroforming on gold-silver-palladium alloy. Material and methods. Three pieces of gold strips had undergone the electroforming procedures on one side and then half of the side again electroformed. The set mode for this study was program 1 ($200{\mu}m$). And the processing time was 15min (1/20 time to form $200{\mu}m$ coping). The confocal laser scanning microscope (PASCAL 5, Carl Zeiss, Bernried, Germany) was used to measure the thickness of the pure gold layer electroformed on the gold strips. Half of the gold strip was coated two times with electroformed gold, and the other half one time. The data from the cone focal laser system was processed to get the vertical profile of the strips and the difference of the vertical height between the double coated and single coated layer was regarded as the thickness of the gold coating. The layer thickness value to built 3D image of the cone-focal laser was set $0.5{\mu}m$. Next to the measurement of the thickness of the coating, the Vicker's hardness test was done. It was performed on the double coated surface, single coated surface and non-coated surface (back side) three times each. Results. The mean thickness value gained from gold electroforming technique was measured to be $22{\mu}m$ for sample 1, $23{\mu}m$ for sample 2, $21{\mu}m$ for sample 3. In the same condition of time, power and the amount of electrolyte, the data showed no difference between samples. According to the results of variance analysis, the differences among the variations in number of coating were statistically insignificant (p>0.05), meaning that the two times of gold electroforming coating did not change the hardness of gold-silver-palladium alloy. Conclusion. The test of thickness of gold coating proved the coherency of the gold electroforming procedure, in other words, when the power, the exposed surface area, processing time and the amount of electrolytes were set same, the same thickness of gold would be coated on. The hardness test showed that the electroformed gold coating did not change the hardness of the gold-silver-palladium alloy when it is coated not more than $45{\mu}m$.

A qualitative analysis of bonding between electroformed surface and veneering ceramics

  • Kwon, Ho-Beom;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.328-335
    • /
    • 2000
  • Statement of the problem. Recently an innovative method of fabricating indirect restorations by gold electroforming has been developed. But the bond quality and strength of the gold coping to the porcelain is uncertain. Purpose of study. The purpose of this study is to analyze and evaluate the electroformed gold surface for mechanical bonding between the gold and the ceramic veneering. Methods/material. Electroformed disks were made using electroforming technique. And the surface of the electroformed coping was analyzed after sandblasting, heat-treatment, bonding agent application, opaque porcelain firing with scanning electron microscopy and energy dispersive x-ray analysis. Results. In the analysis with SEM, Sandblasting made the sharp edges and undercuts on the electroformed surface, and after bonding agent application, net-like structure were created on the electroformed surface. In the energy dispersive x-ray analysis it is confirmed that electroformed surface contains some impurities. Conclusion. With the use of sandblasting and bonding agent, electroformed surface seems to be enough to bond with veneering porcelain.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with Colloidal Gold

  • Kibong Choi;Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 1998
  • We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte(mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with anti-mouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.

  • PDF

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Efficacy of nano-drugs in muscle injury rehabilitation and fatigue relief

  • Zicheng Wang;Yanqing Liu;Haibo Wang;Dai Liu;Niuniu Yang;Mengying Lv
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Gold nanoparticles have recognized a promising drug carriers in many diseases. These nanoparticles could carry anti-inflammatory drugs in the case of muscle injury and for fatigue relief. On the other hand, specific surface of this kind of nanoparticles could be critical in amount of drug they could carry. Therefore, in this study, we explore different methodology and influencing parameters on the specific surface of gold nanoparticles. After specifying the main parameters, different machine learning and artificial neural network are adopted to model the effects of different parameters. Furthermore, response surface methodology is utilized to obtain a quadrilateral relationship between different parameters and specific surface. The results indicate that concentration of the gold salt solution is the most important parameter in increasing the size of gold nanoparticle and, as a consequence, increasing specific surface. Moreover, the ability of gold nanoparticles in prolonging retention of the drugs is discussed in detail.

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Properties of the Gold and Palladium-Nickel Alloy Plated Layers on Electrical Contact Materials (접점상에 입힌 Au 및 Pd-Ni 합금도금층의 특성)

  • 백철승;장현구;김회정
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.3
    • /
    • pp.107-116
    • /
    • 1992
  • The optimum thickness of Pd-Ni plated layers used as an electrical contact film was investigated by evaluating mechanical, thermal and environmental characteristics. The variations of morphologies and chemical compositions were studied by using SEM, EDS and ESCA. As a result of wear test, the wear resistance behavior of the gold plated layers was not changed with the sliding velocity changes. The palladium-nickel plated layer showed better wear resistance than the gold plated layer at low sliding velocity, but it showed poor wear resistance at high sliding velocity. Under the thermal condition of $400^{\circ}C$ in air, the gold thickness of $2\mu\textrm{m}$ without underplate on phosphorous bronze formed copper oxide on the surface layer by rapid diffusion of copper whereas the gold thickness of $0.8\mu\textrm{m}$ deposited on nickel and palladium-nickel underplate was stable at $400^{\circ}C$. Under the sulfur dioxide environments, the gold thickness of $0.3\mu\textrm{m}$ deposited on the nickel thickness of$ 3\mu\textrm{m}$ and the palladium-nickel thickness of $2\mu\textrm{m}$ underplate was more corrosion-resistant than the gold thickness of $2\mu\textrm{m}$ without underplate on phosphorous bronze. Under the nitric acid vapor environment, corrosion resistance of the gold film was superior to an equivalent thickness of the palladium-nickel film.

  • PDF

Surface modification for block copolymer nanolithographyon gold surface

  • Hwang, In-Chan;Bang, Seong-Hwan;Lee, Byeong-Ju;LeeHan, Bo-Ram;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Block copolymer lithography has attracted great attention for emerging nanolithography since nanoscaleperiodic patterns can be easily obtained through self-assembly process without conventional top-down patterning process. Since the morphologies of self-assembled block copolymer patterns are strongly dependent on surface energy of a substrate, suitable surface modification is required. Until now, the surface modification has been studied by using random copolymer or self-assembled mono layers (SAMs). However, the research on surface modifications has been limited within several substrates such as Si-based materials. In present study, we investigated the formation of block copolymer on Au substrate by $O_2$ plasma treatment with the SAM of 3-(p-methoxy-phenyl)propyltrichloro-silane [MPTS, $CH_3OPh(CH_2)_3SiCl_3$]. After $O_2$ plasma treatment, the chemical bonding states of the surface were analyzed by X-ray photoelectron spectroscopy (XPS). The static contact angle measurement was performed to study the effects of $O_2$ plasma treatment on the formation of MPTS monolayer. The block copolymer nanotemplates formed on Au surface were analyzed by scanning electron microscopy. The results showed that the ordering of self-assembled block copolymer pattern and the formation of cylindrical nano hole arrays were enhanced dramatically by oxygen plasma treatment. Thus, the oxidation of gold surface by $O_2$ plasma treatment enables the MPTS to form the monolayer assembly leading to surface neutralization of gold substrates.

  • PDF