• Title/Summary/Keyword: Goethite

Search Result 163, Processing Time 0.028 seconds

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.

An Experimental Study of Corrosion Characteristics and Compounds by Corrosion Factors in Iron Artifacts (철제유물 부식인자에 대한 부식양상 및 부식화합물 실험 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.33-43
    • /
    • 2012
  • The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.

  • PDF

Studies on the Surface Charge Characteristics and Some Physico-Chemical Properties of two Synthetic Iron Hydrous Oxides and one Aluminum Hydroxide Minerals (합성(合成) 수산화(水酸化) 철(鐵) 광물(鑛物)과 수산화(水酸化) 알루미늄 광물(鑛物)의 표면(表面) 전하(電荷) 및 물리화학적(物理化學的) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.147-154
    • /
    • 1984
  • Two Fe-hydrous oxide A,B and one Al-hydroxide minerals were synthesized precipitating Fe $Cl_3$ and $AlCl_3$ with alkali solution(NaOH) at pH 6.0, 12.0 and 4.5 respectively, for precise understanding of physico-chemical and surface charge characteristics of soils in which these minerals are dominant. Identification of these final products, effect of free and amorphous materials on X-ray diffraction analysis, particle size distribution and surface change characterics of these minerals were performed. Fe-hydroxide A and B were identified as great deal of X-ray amorphous material and as goethite with large amount of X-ray amorphous material, respectively. Dehydration by oven at $105^{\circ}C$ of these minerals exhibited akaganeite peaks with low X-ray amorphous hump and pure goethite peaks for Fe-hydroxide A and B, respectively. Both minerals, however, turned into hematite upon firing at $550^{\circ}C$. On the other hand, Al-hydroxide identified as mixture of gibbsite and bayerite of around 7:3 ratio. Application of sodium dithionite and ammonium oxalate solutions for removal of free or amorphous Fe and Al from these minerals revealed that only peak intensities of Al-hydroxide system were enhanced upon Al-extraction by oxalate solution even though dithionite solution was much powerful to extract Fe from Fe-hydrous oxide systems. Original(wet) Fe-hydrous oxide A has the highest specific surface and surface charge development(negative and positive), and the greatest amount of less than $2{\mu}m$ sized particles. Specific surface and clay sized particles(less than $2{\mu}m$) of Fe-hydrous oxide A, however, were drastically reduced upon dehydration($P_2O_5$ and oven drying) compare to the rest minerals. The Z.P.C. of these synthetic minerals were 8.0-8.5, 7.5-8.0 and 5.5-6.0 for Fe-hydrous oxide A, B and Al-hydroxide, respectively.

  • PDF

Mineral Phase Transitions of Jarosite Substituted by Oxyanions during the Reductive Dissolution Using Oxalate Solution (옥살레이트 용액을 이용한 환원성 용해 시 산화음이온으로 치환된 자로사이트의 광물 상변화)

  • Lee, Myoungsin;Lee, Dongho;Chun, Herin;Kim, Yeongkyoo;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • The SO4 in the jarosite structure can be substituted by other oxyanions, and therefore, the transition of jarosite to goethite plays a very important role in controlling the behavior of oxyanions. In this study, the phase change according to the species of the oxyanion in jarosite and the related behavior of the oxyanion was studied by mineralogical and geochemical methods when jarosite, which is coprecipitated with various oxynions, undergoes a phase change by a reductive dissolution. Jarosite substituted by five oxyanions by 5 mol% was used in this study. The mineral phase change induced by reductive dissolution using ammonium oxalate was investigated, and the order of phase transition rate of jarosite to goethite was MoO4-jarosite ≥ SeO4-jarosite ≥ CrO4-jarosite > pure jarosite > SeO3-jarosite > AsO4-jarosite, showing that the transition rates vary depending on the substituted oxyanion. The resultant concentration of the leached Fe was slightly different depending on the type of oxyanion and time but did not show a noticeable difference. The concentration of each oxyanion leached according to the change of the mineral phase showed that the order of concentration of oxyanions was Mo > Se(SeO3) > As > Se(SeO4) > Cr in general, and showed a slight increase with time. This trend was related to the species of oxyanions rather than mineral phase change. The results of this study showed that the phase transition of jarosite to goethite was affected by the species of oxyanions, but this tendency did not affect the concentrations leached oxyanions.

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage (문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Ji-Woo;Ju, Ji-Yeon;Hwang, Su-Hyeon;Kim, Yeongkyoo;Park, Changyun;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.355-365
    • /
    • 2022
  • Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

Seasonal color change of the oxyhydrous precipitates in the Taebaek coal mine drainage, south Korea, and implications for mineralogical and geochemical controls

  • Kim, J. J.;C. O. Choo;Kim, S. J.;K. Tazaki
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.38-39
    • /
    • 2001
  • The seasonal changes in pH, Fe, Al and SO$_4$$\^$2-/ contents of acid drainage released from coal mine dumps play a major role in precipitation of metal hydroxides in the Taebaek coal field area, southeastern Korea. Precipitates in the creeks underwent a cycle of the color change showing white, reddish brown and brownish yellow, which depends on geochemical factors of the creek waters. White precipitates consist of Al-sulfate (basaluminite and hydrobasaluminite) and reddish brown ones are composed of ferrihydrite and brownish yellow ones are of schwertmannite. Goethite coprecipitates with ferrihydrite and schwertmannite. Ferrihydrite formed at higher values than pH 5.3 and schwertmannite precipitated below pH 4.3, and goethite formed at the intermediate pH range between the two minerals. With the pH being increased from acid to intermediate regions, Fe is present both as schwertmannite and goethite. From the present observation, the most favorable pH that basauluminte can precipitate is in the range of pH 4.45-5.95. SEM examination of precipitates at stream bottom shows that they basically consist of agglomerates of spheroid and rod-shape bacteria. Bacteria species are remarkably different among bottom precipitates and, to a less extent, there are slightly different chemical compositions even within the same bacteria. The speciation and calculation of the mineral saturation index were made using MINTEQA2. In waters associated with yellowish brown precipitates mainly composed of schwertmannite, So$_4$ species is mostly free So$_4$$\^$2-/ ion with less AlSo$_4$$\^$+/, CaSo$\sub$(aq)/, and MgSo$\sub$4(aq)/. Ferrous iron is present mostly as free Fe$\^$2+/, and FeSo$\sub$4(aq)/ and ferric iron exists predominantly as Fe(OH)$_2$$\^$+/, with less FeSo$\sub$4(aq)/, Fe(OH)$_2$$\^$-/, FeSo$_4$$\^$-/ and Fe$\^$3+/, respectively Al exists as free Al$\^$3+/, AlOH$_2$$\^$-/, (AlSo$_4$)$\^$+/, and Al(So$_4$)$\^$2-/. Fe is generally saturated with respect to hematite, magnetite, and goethite, with nearly saturation with lepidocrocite. Aluminum and sulfate are supersaturated with respect to predominant alunite and less jubanite, and they approach a saturation state with respect to diaspore, gibbsite, boehmite and gypsum. In the case of waters associated with whitish precipitates mainly composed of basaluminite, Al is present as predominant Al$\^$3+/ and Al(SO$_4$)$\^$+/, with less Al(OH)$\^$2+/, Al(OH)$_2$$\^$+/ and Al(SO$_4$)$\^$2-/. According to calculation for the mineral saturation, aluminum and sulfate are greatly supersaturated with respect to basaluminite and alunite. Diaspore is flirty well supersaturated while jubanite, gibbsite, and boehmite are already supersaturated, and gypsum approaches its saturation state. The observation that the only mineral phase we can easily detect in the whitish precipitate is basaluminite suggests that growth rate of alunite is much slower than that of basaluminite. Neutralization of acid mine drainage due to the dilution caused by the dilution effect due to mixing of unpolluted waters prevails over the buffering effect by the dissolution of carbonate or aluminosilicates. The main factors to affect color change are variations in aqueous geochemistry, which are controlled by dilution effect due to rainfall, water mixng from adjacent creeks, and the extent to which water-rock interaction takes place with seasons. pH, Fe, Al and SO$_4$ contents of the creek water are the most important factors leading to color changes in the precipitates. A geochemical cycle showing color variations in the precipitates provides the potential control on acid mine drainage and can be applied as a reclamation tool in a temperate region with four seasons.

  • PDF

The Decomposition of Carbon-dioxide Using the Oxygen Deficient Magnetite (산소 결함 Magnetite를 이용한 이산화탄소의 분해)

  • 김승호;박영구;이승훈
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.68-74
    • /
    • 1995
  • The optimum conditions was synthesized for the formation of Magnetite ($Fe_3O_4$) by air bubbling with the suspensions obtained by mixing Ferrous sulfate ($FeSO_4\cdot 7H_2O$) and Sodium Hydroxide (NaOH) solution in various values equivalent ratio($R=2NaOH/FeSO_4$) were studied. The changes of the structure were measured with XRD, $EM and BET. Equivalent ratio R: 0.65 was synthesized Goethite ($\alpha$-FeOOH), which becomes Maghemite ($\gamma=Fe_2O_3$) by dehydration, reduction and oxidation process. At the equivalent ratio over 1 (R>1), Magnetite ($Fe_3O_4$) was synthesized directly. The oxygen-deficient Magnetite ($Fe_3O_{4-\delta}$), which is obtained by flowing $H_2$ gas(100 ml/min) through the synthesis Magnetite at 350$\circ$C for 4 hr. By using it, was researched the decomposition reaction of $CO_2$. $CO_2$ was decomposed nearly 100% in 45 minutes by the oxygen-deficient Magnetite.

  • PDF

Improvement of Color for Iron Oxide from Waste Pickling Acid (산화철 안료의 색상개선 연구)

  • 손진군;금대영;이재영;이훈하
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.24-29
    • /
    • 2002
  • In this study, to improve the color of iron oxide from waste pickling acid at the cold rolling mill, the quality control technologies especially about color were investigated on the spray roaster and iron oxide powder. At the operation condition of the spray roaster, the charge amount of waste acid per hour, temperature, numbers of spray nozzle were investigated. At admixing process, titanium oxide, silica, goethite were tested. Color character of iron oxide can be improved by process control at spray roaster and by admixing process at a pigment factory Iron oxide from results of this study is enough to use as the colorant of concrete product.

Sources and Behaviors of Nitrate and Sulfate in Riverside Alluvial Aquifer

  • Choi Byoung-Young;Yun Seong-Taek;Kim Kyoung-Ho;Kim Kang-Joo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.271-273
    • /
    • 2005
  • The ${\delta}^{15}N\;and\;{\delta}^{15}O$ data of nitrate indicates the sources of nitrate in oxic groundwater as a mixture of ammonia or urea-containing fertilizer and manure. The ${\delta}^{34}S_{sulfate}$ values indicate that sulfate Is mainly originated from fertilizers and soil S. In sub-oxic groundwater, the increased ${\delta}^{34}S_{sulfate}$ values evidently indicate that sulfate is gradually removed by microbial mediated sulfate reduction. However, iron reduction does not occur In this study area. Such a reversed redox sequence may occur In the presence of stable iron oxides such as hematite and goethite in alluvlal aquifer.

  • PDF