• Title/Summary/Keyword: Gobi desert

Search Result 42, Processing Time 0.017 seconds

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

The Distribution of Aerosol Concentration during the Asian Dust Period over Busan Area, Korea in Spring 2009 (2009년 봄철 부산지역 황사 기간 중 에어로솔 농도 분포)

  • Jung, Woon-Seon;Park, Sung-Hwa;Lee, Dong-In;Kang, Deok-Du;Kim, Dong-Chul
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.693-710
    • /
    • 2013
  • This study investigates the distribution of suspended particulates during the Asian dust period in Busan, Korea in the spring of 2009. Weather map and automatic weather system (AWS) data were used to analyze the synoptic weather conditions during the period. Particulate matter 10, laser particle counter data, satellite images and a backward trajectories model were used to analyze the aerosol particles distribution and their origins. In Case 1 (20 February 2009), when the $PM_{10}$ concentration increased, the aerosol volume distribution of small ($0.3-1.0{\mu}m$) particles decreased, while the concentration of large ($1.0-10.0{\mu}m$) particles increased. When the $PM_{10}$ concentration decreased, the aerosol volume distribution was observed to decrease as well. The prevailing winds changed from weak northerly winds to strong southwesterly winds when the concentration of the large particles increased. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles showed a high positive value of over 0.9. The results from the trajectory model show that the Asian dust originated in the Gobi desert and the Nei Mongol plateau. In Case 2 (25 April 2009), when the $PM_{10}$ concentration increased, the aerosol volume concentration of small ($0.3-0.5{\mu}m$) particles decreased, but the concentration of large ($0.5-10.0{\mu}m$) particles increased. The opposite was observed when the $PM_{10}$ concentration decreased. The prevailing winds changed from northeasterly winds to southwesterly and northeasterly winds. The correlation coefficient between the $PM_{10}$ concentration and aerosol volume distribution of large particles ($1.0-10.0{\mu}m$) showed a high positive value of about 0.9. The results from the trajectory model show that the Asian dust originated in Manchuria and the eastern coast of China.