• Title/Summary/Keyword: Goal Modeling

Search Result 511, Processing Time 0.027 seconds

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Analyses of the indispensible Indices in Evaluating Gamma Knife Radiosurgery Treatment Plans (감마나이프 방사선수술 치료계획의 평가에 필수불가결한 지표들의 분석)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.303-312
    • /
    • 2017
  • The central goal of Gamma Knife radiosurgery(GKRS) is to maximize the conformity of the prescription isodose surface, and to minimize the radiation effect of the normal tissue surrounding the target volume. There are the various kinds of indices related with the quality of treatment plans such as conformity index, coverage, selectivity, beam-on time, gradient index(GI), and conformity/gradient index(CGI). As the best treatment plan evaluation tool, we must check by all means conformity index, GI, and CGI among them. Specially, GI and CGI related with complication of healthy normal tissue is more indispensible than conformity index. Then author calculated and statistically analysed CGI, the newly defined conformity/gradient index as well as GI being applied widely using the treatment planning system Leksell GammaPlan(LGP) and the verification method Variable Ellipsoid Modeling Technique(VEMT). In the study 10 patients with intracranial lesion treated by GKRS were included. Author computed the indices from LGP and VEMT requiring only four parameters: the prescribed isodose volume, the volume with dose > 30%, the target volume, and the volume of half the prescription isodose. All data were analyzed by paired t-test, which is statistical method used to compare two different measurement techniques. No statistical significance in GI at 10 cases was observed between LGP and VEMT. Differences in GI ranged from -0.14 to 0.01. The newly defined gradient index calculated by two methods LGP and VEMT was not statistically significant either. Author did not find out the statistical difference for the prescribed isodose volume between LGP and VEMT. CGI as the evaluation index for determining the best treatment plan is not significant statistically also. Differences in CGI ranged from -4 to 3. Similarly newly defined Conformity/Gradient index for GKRS was also estimated as the metric for the evaluation of the treatment plans through statistical analysis. Statistical analyses demonstrated that VEMT was in excellent agreement with LGP when considering GI, new gradient index, CGI, and new CGI for evaluating the best plans of GKRS. Due to the application of the fast and easy evaluation tool through LGP and VEMT author hopes CGI and newly defined CGI as well as gradient indices will be widely used.

Analysis of Trends in Education Policy of STEAM Using Text Mining: Comparative Analysis of Ministry of Education's Documents, Articles, and Abstract of Researches from 2009 to 2020 (텍스트 마이닝을 활용한 융합인재교육정책 동향 분석 -2009년~2020년 교육부보도, 언론보도, 학술지 초록 비교분석-)

  • You, Jungmin;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.455-470
    • /
    • 2021
  • This study examines the trend changes in keywords and topics of STEAM education from 2009 to 2020 to derive future development direction and education implications. Among the collected data, 42 cases of Ministry of Education's documents, 1,534 cases of articles, and 880 cases of abstract of researches were selected as research subjects. Keyword analysis, keyword network and topic modeling were performed for each stage of STEAM education policy through the Python program. As a result of the analysis, according to the STEAM education policy stage, there were differences in the frequency and network of keywords related to STEAM education by media. It was confirmed that there was a difference in interest in STEAM education policy as there were differences in keywords and topics that were mainly used importantly by media. Most of the topics of the Ministry of Education's documents were found to correspond to topics derived from articles. The implications for the development direction of STEAM education derived from the results of this study are as follows: first, STEAM education needs to consider ways to connect multiple topics, including the humanities. Second, since the media has a difference in interest in STEAM education policy, it is necessary to seek a cooperative development direction through understanding this. Third, the Ministry of Education's support for core competency reinforcement and convergence literacy for nurturing future talents, the goal of STEAM education, and the media's efforts to increase the public's understanding of STEAM education are required. Lastly, it is necessary to continuously analyze the themes that will appear in the evaluation process and change STEAM education policy.

Investigating Topics of Incivility Related to COVID-19 on Twitter: Analysis of Targets and Keywords of Hate Speech (트위터에서의 COVID-19와 관련된 반시민성 주제 탐색: 혐오 대상 및 키워드 분석)

  • Kim, Kyuli;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.331-350
    • /
    • 2022
  • This study aims to understand topics of incivility related to COVID-19 from analyzing Twitter posts including COVID-19-related hate speech. To achieve the goal, a total of 63,802 tweets that were created between December 1st, 2019, and August 31st, 2021, covering three targets of hate speech including region and public facilities, groups of people, and religion were analyzed. Frequency analysis, dynamic topic modeling, and keyword co-occurrence network analysis were used to explore topics and keywords. 1) Results of frequency analysis revealed that hate against regions and public facilities showed a relatively increasing trend while hate against specific groups of people and religion showed a relatively decreasing trend. 2) Results of dynamic topic modeling analysis showed keywords of each of the three targets of hate speech. Keywords of the region and public facilities included "Daegu, Gyeongbuk local hate", "interregional hate", and "public facility hate"; groups of people included "China hate", "virus spreaders", and "outdoor activity sanctions"; and religion included "Shincheonji", "Christianity", "religious infection", "refusal of quarantine", and "places visited by confirmed cases". 3) Similarly, results of keyword co-occurrence network analysis revealed keywords of three targets: region and public facilities (Corona, Daegu, confirmed cases, Shincheonji, Gyeongbuk, region); specific groups of people (Coronavirus, Wuhan pneumonia, Wuhan, China, Chinese, People, Entry, Banned); and religion (Corona, Church, Daegu, confirmed cases, infection). This study attempted to grasp the public's anti-citizenship public opinion related to COVID-19 by identifying domestic COVID-19 hate targets and keywords using social media. In particular, it is meaningful to grasp public opinion on incivility topics and hate emotions expressed on social media using data mining techniques for hate-related to COVID-19, which has not been attempted in previous studies. In addition, the results of this study suggest practical implications in that they can be based on basic data for contributing to the establishment of systems and policies for cultural communication measures in preparation for the post-COVID-19 era.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

The Impact of Conflict and Influence Strategies Between Local Korean-Products-Selling Retailers and Wholesalers on Performance in Chinese Electronics Distribution Channels: On Moderating Effects of Relational Quality (중국 가전유통경로에서 한국제품 현지 판매업체와 도매업체간 갈등 및 영향전략이 성과에 미치는 영향: 관계 질의 조절효과)

  • Chun, Dal-Young;Kwon, Joo-Hyung;Lee, Guo-Ming
    • Journal of Distribution Research
    • /
    • v.16 no.3
    • /
    • pp.1-32
    • /
    • 2011
  • I. Introduction: In Chinese electronics industry, the local wholesalers are still dominant but power is rapidly swifting from wholesalers to retailers because in recent foreign big retailers and local mass merchandisers are growing fast. During such transient period, conflicts among channel members emerge important issues. For example, when wholesalers who have more power exercise influence strategies to maintain status, conflicts among manufacturer, wholesaler, and retailer will be intensified. Korean electronics companies in China need differentiated channel strategies by dealing with wholesalers and retailers simultaneously to sell more Korean products in competition with foreign firms. For example, Korean electronics firms should utilize 'guanxi' or relational quality to form long-term relationships with whloesalers instead of power and conflict issues. The major purpose of this study is to investigate the impact of conflict, dependency, and influence strategies between local Korean-products-selling retailers and wholesalers on performance in Chinese electronics distribution channels. In particular, this paper proposes effective distribution strategies for Korean electronics companies in China by analyzing moderating effects of 'Guanxi'. II. Literature Review and Hypotheses: The specific purposes of this study are as follows. First, causes of conflicts between local Korean-products-selling retailers and wholesalers are examined from the perspectives of goal incongruence and role ambiguity and then effects of these causes are found out on perceived conflicts of local retailers. Second, the effects of dependency of local retailers upon wholesalers are investigated on local retailers' perceived conflicts. Third, the effects of non-coercive influence strategies such as information exchange and recommendation and coercive strategies such as threats and legalistic pleas exercised by wholesalers are explored on perceived conflicts by local retailers. Fourth, the effects of level of conflicts perceived by local retailers are verified on local retailers' financial performance and satisfaction. Fifth, moderating effects of relational qualities, say, 'quanxi' between wholesalers and retailers are analyzed on the impact of wholesalers' influence strategies on retailers' performances. Finally, moderating effects of relational qualities are examined on the relationship between conflicts and performance. To accomplish above-mentioned research objectives, Figure 1 and the following research hypotheses are proposed and verified. III. Measurement and Data Analysis: To verify the proposed research model and hypotheses, data were collected from 97 retailers who are selling Korean electronic products located around Central and Southern regions in China. Covariance analysis and moderated regression analysis were employed to validate hypotheses. IV. Conclusion: The following results were drawn using structural equation modeling and hierarchical moderated regression. First, goal incongruence perceived by local retailers significantly affected conflict but role ambiguity did not. Second, consistent with conflict spiral theory, the level of conflict decreased when retailers' dependency increased toward wholesalers. Third, noncoercive influence strategies such as information exchange and recommendation implemented by wholesalers had significant effects on retailers' performance such as sales and satisfaction without conflict. On the other hand, coercive influence strategies such as threat and legalistic plea had insignificant effects on performance in spite of increasing the level of conflict. Fourth, 'guanxi', namely, relational quality between local retailers and wholesalers showed unique effects on performance. In case of noncoercive influence strategies, 'guanxi' did not play a role of moderator. Rather, relational quality and noncoercive influence strategies can serve as independent variables to enhance performance. On the other hand, when 'guanxi' was well built due to mutual trust and commitment, relational quality as a moderator can positively function to improve performance even though hostile, coercive influence strategies were implemented. Fifth, 'guanxi' significantly moderated the effects of conflict on performance. Even if conflict arises, local retailers who form solid relational quality can increase performance by dealing with dysfunctional conflict synergistically compared with low 'quanxi' retailers. In conclusion, this study verified the importance of relational quality via 'quanxi' between local retailers and wholesalers in Chinese electronic industry because relational quality could cross out the adverse effects of coercive influence strategies and conflict on performance.

  • PDF

Exploring Opinions on University Online Classes During the COVID-19 Pandemic Through Twitter Opinion Mining (트위터 오피니언 마이닝을 통한 코로나19 기간 대학 비대면 수업에 대한 의견 고찰)

  • Kim, Donghun;Jiang, Ting;Zhu, Yongjun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.4
    • /
    • pp.5-22
    • /
    • 2021
  • This study aimed to understand how people perceive the transition from offline to online classes at universities during the COVID-19 pandemic. To achieve the goal, we collected tweets related to online classes on Twitter and performed sentiment and time series topic analysis. We have the following findings. First, through the sentiment analysis, we found that there were more negative than positive opinions overall, but negative opinions had gradually decreased over time. Through exploring the monthly distribution of sentiment scores of tweets, we found that sentiment scores during the semesters were more widespread than the ones during the vacations. Therefore, more diverse emotions and opinions were showed during the semesters. Second, through time series topic analysis, we identified five main topics of positive tweets that include class environment and equipment, positive emotions, places of taking online classes, language class, and tests and assignments. The four main topics of negative tweets include time (class & break time), tests and assignments, negative emotions, and class environment and equipment. In addition, we examined the trends of public opinions on online classes by investigating the changes in topic composition over time through checking the proportions of representative keywords in each topic. Different from the existing studies of understanding public opinions on online classes, this study attempted to understand the overall opinions from tweet data using sentiment and time series topic analysis. The results of the study can be used to improve the quality of online classes in universities and help universities and instructors to design and offer better online classes.

The Study on the Factors of film's Processing Fluency Inducing Film's Preference Fluency (영화의 선호도 유창성에 영향을 미치는 영화의 처리 유창성 요인에 관한 연구)

  • Choi, Nak Hwan;Lim, Ahyoung
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.29-54
    • /
    • 2012
  • Recently, as film has been admitted as the artistic merit and higher value-added business, the past studies on film have been lively carried on various fields. Especially, the film business is thought to be value-added business and has explored the causes of influencing spectators. However, there are no researches enough to explain what induces the choice and diffusion of the film. The film is not only hedonic products but also typical example of experiential products. So how to process film formation plays important roles in explaining the procedures of forming preference on the film and the movies spread more widely. But the great part of study of films has been concentrated on exploring hedonic factors of influencing spectator's choice. Until now there is not enough study for the relationship between experiential information processing and film preference. To explain film's preference, our study focuses on preference fluency and processing fluency that can provide an insight for our question about the relationship. In this article, to explain the procedures of processing experiential information and forming preference on the film, our study focuses on finding the relationship between film's processing fluency and film's preference fluency and explores the factors that affect film's processing fluency. To achieve the goal of this study, we distinguish factors of film's conceptual fluency from factors of film's perceptual fluency and explore the paths from the factors to film's preference fluency. The factors which have effects on perceptual fluency are hypothesized to be distinction of image expression, distinction of sound expression, correspondence between actors' image and their role. The factors which have effect on conceptual fluency are supposed to be well-organized story, suitability of lines expression. The experiments in which students were sampled at 'C' university were conducted in 2010 (december). Data collection was proceeded through questionnaires. We test the hypothesized model by using structural equation modeling(Amos 17.0). The fit indices for the model are as follows : x2=416.266(df=213, p=0.00), GFI=0.855, AGFI=0.812, RMSEA =0.069, IFI=O.925, CFI=0.920, TLI=0.905. According to the guidelines, there is evidence that our measurement model fits data. The results of empirical study are as follows. The path from film's perceptual fluency to film's preference fluency is supported(estimate: 0.223, C.R: 2.641). The path from film's conceptual fluency to film's preference fluency is supported(estimate: 0.397, C.R: 4.863). The path from distinction of image expression to film's perceptual fluency is not supported(estimate: 0.113, C.R: 1.665). The path from distinction of sound expression to film's perceptual fluency is supported (estimate: 0.190, C.R: 2.042). The path from correspondence between actors' image and their role to film's perceptual fluency is supported(estimate: 0.686, C.R: 5.566). The path from well-organized story to film's conceptual fluency is supported(estimate: 0.396, C.R: 4.023). The path from suitability of lines expression to film's conceptual fluency is supported(estimate: 0.536, C.R: 5.441). Concludingly, our study explored the influencing factors of film's processing fluency inducing film's Preference fluency. First, film's perceptual fluency and film's conceptual fluency have positive effects on film's preference fluency. Second, distinction of image expression is not significant on film's perceptual fluency, but distinction of sound expression and image's correspondence of actors' image and their role have positive effects on film's perceptual fluency. Lastly, well-organized story and suitability of lines expression have positive effects on film's conceptual fluency.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.

The Research on Online Game Hedonic Experience - Focusing on Moderate Effect of Perceived Complexity - (온라인 게임에서의 쾌락적 경험에 관한 연구 - 지각된 복잡성의 조절효과를 중심으로 -)

  • Lee, Jong-Ho;Jung, Yun-Hee
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.147-187
    • /
    • 2008
  • Online game researchers focus on the flow and factors influencing flow. Flow is conceptualized as an optimal experience state and useful explaining game experience in online. Many game studies focused on the customer loyalty and flow in playing online game, In showing specific game experience, however, it doesn't examine multidimensional experience process. Flow is not construct which show absorbing process, but construct which show absorbing result. Hence, Flow is not adequate to examine multidimensional experience of games. Online game is included in hedonic consumption. Hedonic consumption is a relatively new field of study in consumer research and it explores the consumption experience as a experiential view(Hirschman and Holbrook 1982). Hedonic consumption explores the consumption experience not as an information processing event but from a phenomenological of experiential view, which is a primarily subjective state. It includes various playful leisure activities, sensory pleasures, daydreams, esthetic enjoyment, and emotional responses. In online game experience, therefore, it is right to access through a experiential view of hedonic consumption. The objective of this paper was to make up for lacks in our understanding of online game experience by developing a framework for better insight into the hedonic experience of online game. We developed this framework by integrating and extending existing research in marketing, online game and hedonic responses. We then discussed several expectations for this framework. We concluded by discussing the results of this study, providing general recommendation and directions for future research. In hedonic response research, Lacher's research(1994)and Jongho lee and Yunhee Jung' research (2005;2006) has served as a fundamental starting point of our research. A common element in this extended research is the repeated identification of the four hedonic responses: sensory response, imaginal response, emotional response, analytic response. The validity of these four constructs finds in research of music(Lacher 1994) and movie(Jongho lee and Yunhee Jung' research 2005;2006). But, previous research on hedonic response didn't show that constructs of hedonic response have cause-effect relation. Also, although hedonic response enable to different by stimulus properties. effects of stimulus properties is not showed. To fill this gap, while largely based on Lacher(1994)' research and Jongho Lee and Yunhee Jung(2005, 2006)' research, we made several important adaptation with the primary goal of bringing the model into online game and compensating lacks of previous research. We maintained the same construct proposed by Lacher et al.(1994), with four constructs of hedonic response:sensory response, imaginal response, emotional response, analytical response. In this study, the sensory response is typified by some physical movement(Yingling 1962), the imaginal response is typified by images, memories, or situations that game evokes(Myers 1914), and the emotional response represents the feelings one experiences when playing game, such as pleasure, arousal, dominance, finally, the analytical response is that game player engaged in cognition seeking while playing game(Myers 1912). However, this paper has several important differences. We attempted to suggest multi-dimensional experience process in online game and cause-effect relation among hedonic responses. Also, We investigated moderate effects of perceived complexity. Previous studies about hedonic responses didn't show influences of stimulus properties. According to Berlyne's theory(1960, 1974) of aesthetic response, perceived complexity is a important construct because it effects pleasure. Pleasure in response to an object will increase with increased complexity, to an optimal level. After that, with increased complexity, pleasure begins with a linearly increasing line for complexity. Therefore, We expected this perceived complexity will influence hedonic response in game experience. We discussed the rationale for these suggested changes, the assumptions of the resulting framework, and developed some expectations based on its application in Online game context. In the first stage of methodology, questions were developed to measure the constructs. We constructed a survey measuring our theoretical constructs based on a combination of sources, including Yingling(1962), Hargreaves(1962), Lacher (1994), Jongho Lee and Yunhee Jung(2005, 2006), Mehrabian and Russell(1974), Pucely et al(1987). Based on comments received in the pretest, we made several revisions to arrive at our final survey. We investigated the proposed framework through a convenience sample, where participation in a self-report survey was solicited from various respondents having different knowledges. All respondents participated to different degrees, in these habitually practiced activities and received no compensation for their participation. Questionnaires were distributed to graduates and we used 381 completed questionnaires to analysis. The sample consisted of more men(n=225) than women(n=156). In measure, the study used multi-item scales based previous study. We analyze the data using structural equation modeling(LISREL-VIII; Joreskog and Sorbom 1993). First, we used the entire sample(n=381) to refine the measures and test their convergent and discriminant validity. The evidence from both the factor analysis and the analysis of reliability provides support that the scales exhibit internal consistency and construct validity. Second, we test the hypothesized structural model. And, we divided the sample into two different complexity group and analyze the hypothesized structural model of each group. The analysis suggest that hedonic response plays different roles from hypothesized in our study. The results indicate that hedonic response-sensory response, imaginal response, emotional response, analytical response- are related positively to respondents' level of game satisfaction. And game satisfaction is related to higher levels of game loyalty. Additionally, we found that perceived complexity is important to online game experience. Our results suggest that importance of each hedonic response different by perceived game complexity. Understanding the role of perceived complexity in hedonic response enables to have a better understanding of underlying mechanisms at game experience. If game has high complexity, analytical response become important response. So game producers or marketers have to consider more cognitive stimulus. Controversy, if game has low complexity, sensorial response respectively become important. Finally, we discussed several limitations of our study and suggested directions for future research. we concluded with a discussion of managerial implications. Our study provides managers with a basis for game strategies.

  • PDF