• Title/Summary/Keyword: Glycosides

Search Result 597, Processing Time 0.022 seconds

Comparison of the bioactive compounds and anti-inflammatory effects found in different flower colors from Abeliophyllum distichum Nakai (미선나무 꽃 색에 따른 생리활성 화합물 및 항염증 활성 비교)

  • Jang, Tae-Won;Choi, Ji-Soo;Han, So-Yeon;Park, Hye-Jeong;Lee, Da-Yoon;Min, Young-Sil;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.203-213
    • /
    • 2022
  • Abeliophyllum distichum (A. distichum, Korean endemic plant) is one genus and one species in the Oleaceae family. According to the color variation of petals and calyx, A. distichum is classified as A. distichum (white flower), A. distichum for. lilacinum (pink flowers), A. distichum for. eburneum (ivory flowers), and Okhwang 1 (golden flowers). In previous studies, bioactivities (antioxidant, anti-inflammatory, and anti-cancer) of A. distichum have been reported. We conducted a comparison of the differences in bioactive compounds and the anti-inflammatory effects on macrophages among four flowers of A. distichum (FAD). The identification and quantification of glycosides were analyzed by HPLC/PDA and LCMS. These results were shown FAD has rutin, hirsutrin, and acteoside. Antioxidant activity of FAD significantly decreased reactive oxygen species. In addition, FAD reduced the expression of pro-inflammatory mediators (nitric oxide, iNOS, and COX-2) in lipopolysaccharide-induced RAW 264.7 cells. For further study, we investigated the regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. In conclusion, FAD may exert anti-inflammatory effects by suppressing inflammatory mediators via regulations of NF-κB and MAPK signaling pathways. Therefore, these findings suggest that FAD is a potential resource as a preventative or therapeutic agent for inflammation.

Changes of Phytochemicals and Antioxidant Activity during Fermentation of Brown Soymilk (갈색콩 두유의 젖산 발효 중 phytochemicals 및 항산화 활성 변화)

  • Hwang, Chung Eun;Lee, Byong Won;An, Min Ju;Lee, Hee Yul;Kim, Hyun Tae;Ko, Jong Min;Baek, In Youl;Cho, Kye Man
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.157-167
    • /
    • 2016
  • The changes of total phenolic and isoflavone contents and antioxidant activities in of brown soymilk fermented by Lactobacillus plantarum P1201 were investigated. The brown soymilk proliferated the cell growth and reached about 11.55log cfu/g after fermentation for 60hr, while pH and titratable acidity ranged from 6.25 to 4.03 and 0.18% to 1.03%, respectively. The total phenolic contents of brown soymilk slightly increased from 2.87mg/g to 2.98mg/g after fermentation for 60hr. The levels of isoflavone-glycosides and -malonylglycosides decreased, while the isoflavone-aglycone contents increased during fermentation of brown soymilk. In particular, the isoflavone contents was 38.30㎍/g, but increased the highest value of 84.31㎍/g after fermentation for 60hr. After then, it was slightly decreased after 60hr of fermentation. In addition, the levels of daidzein, glycitein and genistein among isoflavone aglycones were 24.12㎍/g, 25.25㎍/g and 24.71 ㎍/g, after fermentation for 36hr. The DPPH and ABTS radical scavenging activities and FRAP assay showed to be slightly increased during lactic acid fermentation of brown soymilk.

Bioconversion of Isoflavone and Soyasaponin in the Fermentation of Soy Embryo Using Lactic Acid Bacteria (콩배아의 Lactobacillus plantarum 발효에 의한 이소플라본과 소야사포닌 변화)

  • Lee, Mi Ja;Park, Song Yi;Lee, Kwang sik;Kim, Hyun young;Ra, Ji Eun;Ham, Hyeon Mi
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.209-216
    • /
    • 2019
  • The effects of fermentation on soy embryo have been investigated using lactic acid bacteria, Lactobacillus acidophilus (LA), Lactobacillus bulgaricus (LB), Streptococcus thermophilussei (ST), and Lactobacillus plantarum (LP). As a result of the fermentation test of the isoflavone conversion by strain type, inoculation content, and fermentation time, the optimum conditions were LP bacterium, an inoculum amount of 5%, and a fermentation time of 24 hours. The composition of the isoflavone glycosides in the control was the highest in the order of glycitin> daidzin> genistin. When fermented with lactic acid bacteria, glycoside content decreased, and aglycone content increased. The order of composition was daidzein>glycitein>genistein. In the fermentation with LP bacterium, soyasaponin Ab content decreased and Ba and Bb content increased. Upon assessing the result of the experiment, it was found that the pH of the fermentation broth had a great influence in the bioconversion of isoflavone and soyasaponin. In the case of fermentation by pH 6 broth, aglycone and Bb content was the highest. The increase of aglycone content by fermentation reaction with the LP bacterium can increase the physiological activity and functionalization of soy embryo, which is a byproduct of processing.

Anti-photoaging Effects of Flavonoid glycosides from shizophragma hydrangeoides (바위수국으로부터 분리한 플라보노이드 배당체의 광노화 예방 효과)

  • Sung Chun Kim;So Yeon Oh;Hyejin Hyeon;Yong-Hwan Jung;Young-Min Ham
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.25-25
    • /
    • 2022
  • 피부 노화는 피부와 피부 지지층 등의 광범위한 퇴행 과정을 말한다. 피부 노화의 원인은 흡연, 공해, 스트레스 등이 있지만, 그 중에서도 자외선(ultra violet, UV) 조사가 가장 큰 요인으로 꼽힌다. 반복적인 자외선 조사에 의해 진행되는 피부노화를 광노화라고 하며 그 가장 큰 특징으로는 콜라겐 섬유와 엘라스틴의 감소로 야기되는 주름을 들 수 있다. 본 연구에서는 제주에서 채집한 바위수국의 추출물 및 분획물의 항산화 및 자외선으로 인한 피부노화 예방(anti-photoaging) 효능을 확인하고, 활성물질을 분리하여 광노화 예방 효능과 그 메커니즘을 확인하였다. 실험에 사용된 바위수국은 범의귀과의 덩굴성 식물로 바위면이나 나무줄기 등에 붙어서 자라며, 한국(제주, 울릉도)과 일본에 분포한다. 바위수국 추출물과 분획물에서 총 페놀 함량. 총 플라보이드 함량, DPPH 및 ABTS 라디칼소거 활성의 항산화 실험 결과, 부탄올과 에틸아세테이트 분획층에서 강력한 항산화 활성이 관찰되었다. 또한 UVA를 조사한 인간 진피 섬유아세포 (human dermal fibroblast, HDF)데 대한 콜라겐 분해효소인 matrix metalloproteinase-1(MMP-1) 생성 억제 활성을 확인한 결과, 부탄올 분획층이 세포 생장 저해 없이 가장 우수한 효능이 확인되었다. 따라서 부탄올 분획층에서 주요 성분 분리 실험을 수행하여 총 4개의 화합물을 분리하였다; Chlorogenic acid (1), Quercetin-3-O-glucosyl-(1-2)-rhamnoside (2), Quercetin-3-O-xylosyl-(1-2)-rhamnoside (3), Quercitrin (4). 분리한 4개의 물질의 MMP-1 생성 억제 활성을 비교한 결과 화합물 2가 세포독성 없이 MMP-1 생성 억제 효능이 우수하였고, 이후 화합물 2의 광노화 예방 효능과 그 메커니즘을 확인하였다. 화합물 2는 MMP-1의 생성을 억제할 뿐만 아니라 procollagen type I의 생성을 증가시켰으며, MMP-1 생성에 관여하는 mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) 신호전달경로를 하향 조절하며, 콜라겐 생성과 관련된 Transforming growth factor-β (TGF-β)/Smad 신호전달경로를 상향 조절하여 UVA에 의한 광노화 예방에 효능을 나타내었다. 이러한 결과들을 바탕으로, 바위수국은 항노화(anti-aging) 기능성 화장품 및 이너뷰티 기능성 식품 소재로 개발이 가능할 것으로 기대된다.

  • PDF

Cytotoxic compounds against adenocarcinoma alveolar epithelial A549 cells from Paeoniae Radix (작약 뿌리에서 분리한 폐포 선암 세포주 A549에 대한 세포독성 화합물)

  • Ji Won Park;Sang-Eun Shin;Haewon Park;Jeong Ah Kim;Eun-Ju Yang;Kyung-Sik Song
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.272-281
    • /
    • 2023
  • It has been known that Paeoniae Radix (PR) contains monoterpene glycosides showing a variety of biological activities such as anti-spasmodic, anti-inflammatory, anti-viral, neuroprotective, and sedative effects. This study aimed to find the cytotoxic compounds isolated from the dichloromethane (CH2Cl2)- and ethyl acetate-soluble fractions of PR. As results, thirteen compounds (1-13) were isolated and the chemical structures were identified. In addition, the human alveolar adenocarcinoma cell line (A549) was treated with isolated compounds to determine the cytotoxic effect via evaluation of cell viability. The reduction of A549 cell viability was shown as following order; gallic acid (8) > (2S)-naringenin (9) > methyl gallate (10)>6'-O-benzoylpaeoniflorin (7) > palmitic acid (3). Especially, 7 did not show the cytotoxicity in the human lung fibroblast cell line (MRC-5). The effect of 7 on the cell viabilities in A549 and MRC-5 is firstly reported in this study. Further study is required to find out the cytotoxic mechanism and the selectivity for the cancer cells of 7 in detail.

Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage

  • Cheol Park;Hee-Jae Cha;Hyun Hwangbo;EunJin Bang;Heui-Soo Kim;Seok Joong Yun;Sung-Kwon Moon;Wun-Jae Kim;Gi-Young Kim;Seung-On Lee;Jung-Hyun Shim;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.329-340
    • /
    • 2024
  • Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

Inhibitory Effects of Anthocyanins Isolated from Black Soybean (Glycine max L.) Seed Coat on Degranulation and Cytokine Generation in RBL-2H3 Cells (검정콩 껍질 유래 안토시아닌의 RBL-2H3 세포에서 탈과립화와 사이토카인 생성 저해 효과)

  • Chung, Mi-Ja;Ha, Tae-Joung;Choi, Ha-Na;Lee, Ji-Sun;Park, Yong-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1662-1667
    • /
    • 2011
  • Anthocyanins belong to a group of flavonoid compounds and are well known for their various health beneficial effects, which include antioxidative activities. Among them, the major anthocyanins isolated from seed coat of black soybean (Glycine max L.) were previously characterized as glycosides containing glucopyranose. Asthma is an allergic disease that is strongly associated with various immune cells, including basophils and mast cells. Eosinophils, basophils, and mast cells play important roles in allergic asthma through the release of inflammatory mediators such as asthma-specific T-helper 2 (Th2) cytokines and subsequent amplification of asthma symptoms via degranulation. Rat basophilic leukemia RBL-2H3 cells are the most common in vitro models for evaluating allergic reactions. In this study, we examined the effects of anthocyanin from seed coat of black soybean on antigen-stimulated degranulation and Th2 cytokine production in RBL-2H3 cells. Cell degranulation was evaluated by measuring the release of ${\beta}$-hexosaminidase. ${\beta}$-Hexosaminidase release and Th2 cytokine production in RBL-2H3 cells was much higher upon stimulation with IgE-antigen complex than those in untreated control cells. Anthocyanins significantly suppressed IgE-antigen complex-induced degranulation of RBL-2H3 cells and inhibited IgE-antigen complex-mediated interleukin (IL)-4, IL-13, and tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) production in RBL-2H3 cells. These findings suggest that anthocyanins from seed coat of black soybean effectively inhibit allergic reactions and may have beneficial effects against allergic asthma.

Characteristics of Squid Viscera Oil (오징어 내장의 지방질조성)

  • KIM Eun-Mi;JO Jin-Ho;OH Se-Wook;KIM Young-Myoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.595-600
    • /
    • 1997
  • The oil content and composition of squid visera were determined to obtain data for utilization of this by-product. There was no significant difference in the glycolipid (GL) and phospholipid (PL) content in Illex argentinus and Todarodes pacificus, but neutral lipid (NL) was different (p<0.05). The viscera oil of I. argentinus contained $30.50\%$ total lipid which consisted of $96.24\%$ NL, $2.63\%$ GL, $2.37\%$ PL, and contained $644mg\%$ cholesterol. The viscera oil of T. pacificus contained $30.20\%$ total lipid which consisted of $94.82\%$ NL, $2.85\%$ GL, $2.34\%$ PL, and contained $1,224\;mg\%$ cholesterol. The NL, GL and PL of viscera oil in I. argentinus mainly consist of triglyceride $(44.01\%)$, esterified steryl glycosides $(58.95\%)$ and phosphatidyl cholines $(32.36\%)$, respertively. Those of viscera oil in T. pacificus mainly consist of triglyceride $(39.63\%)$, monogalactosyl diglycerides $(51.67\%)$ and phosphatidyl cholines $(31.98\%)$, respectively. The major fatty acids of the viscera oil of I. argentinus and T. pacificus were C16 : 0, $C16\;:\;0,\;C18\;:\;1\omega9,\;C20\;:\;4\omega6,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$. In Illex argentinus, the fatty acids of NL mainly were $C16\;:\;0,\;C18\;:\;1\omega9,\;C20\;:\;4\omega6,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$. PL were $C16\;:\;1\omega7,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$ and GL were $C18\;:\;1\omega9,\;C20\;:\;5\omega3,\;22\;:\;6\omega3$. The major fatty acids of NL in T. pacificus were $C16\;:\;0,\;C18\;:\;1\omega9,\;C20\;:\;4\omega6,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$, PL were $C16\;:\;1\omega7,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$, and GL were $C18\;:\;1\omega9,\;C20\;:\;5\omega3,\;C22\;:\;6\omega3$.

  • PDF

Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 억제를 통한 rebaudioside A의 항염 효과)

  • Choi, Da Hee;Cho, Uk Min;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.205-211
    • /
    • 2018
  • Rebaudioside A is a natural sweetener isolated from Stevia rebaudiana Bertoni, one of the glycosides based on steviol. Recent studies have shown that rebaudioside A inhibits the inflammatory response by inhibiting cytokines secretion such as interleukin-$1{\alpha}/1{\beta}$ in activated RAW264.7 mouse macrophage cells by LPS. However, the inhibitory mechanism of inflammation by rebaudioside A in the presence of LPS has not been fully elucidated. Therefore, in this study, we tried to investigate the anti-inflammatory activity of rebaudioside A at the protein level when RAW264.7 cells were stimulated by LPS. The inducible nitric oxide synthase protein expression level was reduced in the group treated with $250{\mu}M$ rebaudioside A compared to the LPS-treated group. In addition, the mRNA expression level of $NF-{\kappa}B$, which is a representative nuclear transcription factor by inflammatory signal, was also decreased as compared with that of LPS-treated group. In addition, $NF-{\kappa}B$ and inhibitor-${\kappa}B$ ($I-{\kappa}B$) complexes that are known to be dissociated by $I-{\kappa}B$ phosphorylation and ubiquitination were less phosphorylated than LPS treated group in the presence rebaudioside A. Finally, we could find that rebaudioside A was involved in the $NF-{\kappa}B$ pathway through reducing extracellular signal-regulated kinase1/2 phosphorylation in a concentration-dependent manner. These results suggest that rebaudioside A might suppress inflammatory reaction through MAPK and $NF-{\kappa}B$ regulation in LPS-stimulated RAW264.7.

Effect of Steviol β-Glucopyranosyl Ester on The Production of Nitric Oxide and Inflammatory Cytokines in RAW 264.7 Cells (Steviol β-Glucopyranosyl Ester가 RAW 264.7 세포의 산화질소 및 염증성 사이토카인 생성에 미치는 영향)

  • Jung, Heehoon;Cho, Uk Min;Hwang, Hyung Seo;Cho, Kun;Lee, Sang Rin;Kim, Moo Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • Chronic inflammation is known to have effects on various diseases such as gout, cancer, dementia, atopic disease, and obesity. In addition, since some signal cascades involved in the development of inflammation are known to affect the damage and aging of the skin tissue, studies are being conducted actively to control the inflammation mechanism. In order to mitigate or prevent inflammatory response, a number of researches have been made to develop anti-inflammatory materials from some plants. In particular, Stevia rebaudiana produces steviol glycosides (SG), a natural sweetener with a distinctive flavor. Studies on some of SG have been shown to have anti-inflammatory activity. Researchers of this study expected that more SG also possess anti-inflammatory activity, besides stevioside, rebaudioside A, and steviol. In order to confirm this possibility, the researchers screened inhibition activity of various steviol glucosides for NO production in RAW 264.7 cell lines. As a result, steviol ${\beta}-glucopyranosyl$ ester (SGE) showed the highest inhibitory activity among steviol derivatives treated at the same molar concentration. In addition, we found that mRNA expression level of $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS) was also decreased in a dose-dependent manner. These results show that SGE inhibits anti-inflammatory activity and NO production in mouse macrophage RAW 264.7 cells. It was confirmed that SGE has potential to be applied as an anti-inflammatory material.