• 제목/요약/키워드: Glycoside Hydrolase

검색결과 62건 처리시간 0.03초

PspAG97A: A Halophilic α-Glucoside Hydrolase with Wide Substrate Specificity from Glycoside Hydrolase Family 97

  • Li, Wei;Fan, Han;He, Chao;Zhang, Xuecheng;Wang, Xiaotang;Yuan, Jing;Fang, Zemin;Fang, Wei;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1933-1942
    • /
    • 2016
  • A novel ${\alpha}-glucoside$ hydrolase (named PspAG97A) from glycoside hydrolase family 97 (GH97) was cloned from the deep-sea bacterium Pseudoalteromonas sp. K8, which was screened from the sediment of Kongsfjorden. Sequence analysis showed that PspAG97A belonged to GH97, and shared 41% sequence identity with the characterized ${\alpha}-glucoside$ BtGH97a. PspAG97A possessed three key catalytically related glutamate residues. Mutation of the glutamate residues indicated that PspAG97A belonged to the inverting subfamily of GH97. PspAG97A showed significant reversibility against changes in salt concentration. It exhibited halophilic ability and improved thermostability in NaCl solution, with maximal activity at 1.0 M NaCl/KCl, and retained more than 80% activity at NaCl concentrations ranging from 0.8 to 2.0 M for over 50 h. Furthermore, PspAG97A hydrolyzed not only ${\alpha}-1,4-glucosidic$ linkage, but also ${\alpha}-1,6-$ and ${\alpha}-1,2-glucosidic$ linkages. Interestingly, PspAG97A possessed high catalytic efficiency for long-chain substrates with ${\alpha}-1,6-linkage$. These characteristics are clearly different from other known ${\alpha}-glucoside$ hydrolases in GH97, implying that PspAG97A is a unique ${\alpha}-glucoside$ hydrolase of GH97.

A New Flavonol Glycoside from the Leaves of Boscia senegalensis

  • Morgan, Abubaker M.A.;Kim, Jang Hoon;Kim, Sang Kyum;Lim, Chi-Hwan;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3447-3452
    • /
    • 2014
  • Detailed chemical investigation of Boscia senegalensis (Per) Lam. ex Poir. led to the isolation of one new flavonol glycoside, rhamnocitrin-3-O-${\beta}$-$\small{D}$-(6"-O-E-feruloyl)-glucopyranoside named bosenegaloside A (1), with seven known compounds, rhamnocitrin-3-O-${\beta}$-$\small{D}$-(6"-O-E-p-coumaroyl)-glucopyranoside (2), rhamnocitrin-3-O-${\beta}$-$\small{D}$-glucopyranoside (3), 3,4,5-trimethoxyphenol-${\beta}$-$\small{D}$-glucopyrinoside (4), lasianthionoside A (5), 3,7-dimethyl-1-octene-3,6,7-triol-6-O-${\beta}$-$\small{D}$-glucopyranoside (6), syringin (7), and austroside B (8). The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of these data with previously published results. The inhibitory activity of the isolated compounds on soluble epoxide hydrolase (sEH) was assessed. Compounds 1-3 potently inhibited sEH activity with $IC_{50}$ values of $12.8{\pm}0.5$, $18.4{\pm}0.2$, and $11.3{\pm}0.9{\mu}M$, respectively.

구아바 잎 열수추출물의 당류분해효소 저해 효과 및 OGTT에 미치는 효과 (Effect of Aqueous Extract of Guava (Psidium guajava L.) Leaves on the Oral Glucose Tolerance Test and Inhibition of Glycoside Hydrolase)

  • 최수민;김중학;정지상;김화영;장혜은;황성주;홍성길
    • 한국약용작물학회지
    • /
    • 제20권2호
    • /
    • pp.94-100
    • /
    • 2012
  • Guava ($Psidium$ $guajava$) contain a great deal of polyphenol compound and work on the treatment of $Diabetes$ $mellitus$ effectively. In this study, the bioactivities of aqueous extract (GLEx) of guava leaf were investigated. Total phenolic contents of GLEx was 266.9 mg tan/g. The effects of GLEx on digestive enzymes, ${\alpha}$-amylase, maltase and sucrase were investigated. $IC_{50}$ values of GLEx against ${\alpha}$-amylase, maltase and sucrase were 0.65 mg/$m{\ell}$, 2.0 mg/$m{\ell}$ and 3.5 mg/$m{\ell}$ respectively. The effect of GLEx on oral glucose tolerance test (OGTT) was performed in normal ICR mouse, control (dstilled water) and GLEx (aqueous extract of Guava leaf) were co-administered orally with glucose, showed reducing effect on the blood glucose level. The guava is likely to useful for prevention or improvement of hyperglycemia by lowering the blood glucose level and inhibiting glycoside hydrolase activity.

Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates

  • Liers, Christiane;Ullrich, Rene;Kellner, Harald;Chi, Do Huu;Quynh, Dang Thu;Luyen, Nguyen Dinh;Huong, Le Mai;Hofrichter, Martin;Nghi, Do Huu
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1438-1445
    • /
    • 2021
  • A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 ㎍/g and improved to 270 ㎍/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.

담자균 Phanerochaete chrysosporium으로부터 유래한 Glycoside Hydrolase Family 74 유전자 클로닝과 전사산물 분석 (Molecular Cloning of Glycoside Hydrolase Family 74 Genes and Analysis of Transcript Products from the Basidiomycete Phanerochaete chrysosporium)

  • 이재원;鮫島正浩;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권3호
    • /
    • pp.56-63
    • /
    • 2006
  • 셀룰로오스의 가수분해 기작을 구명하기 위하여 Phanerochaete chrysosporium으로부터 74A (PcGHF74A) 유전자를 클로닝한 결과 2162 bp의 염기서열에 해당하는 721개의 아미노산을 가지고 있으며, 다른 사상균에서 유래한 GHF74와 70~77%의 상동성을 나타냈다. Phanerochaete chrysosporium GHF74B (PcGHF74B)는 family 1에 속하는 Cellulose Binding Module (CBM)을 가지고 있으며 셀룰로오스 배양계에서 다양한 전사산물이 존재하였다. PcGHF74B 전사산물에서 나타난 splice variants를 조사하기 위해서 annotation data와 sequence data로부터 primer를 설계하여 RT-PCR분석을 수행하였으며 그 결과 다양한 배양조건에서 splice variants가 존재함을 확인하였다. 첫 번째는 annotation data와 다르게 11번째 intron을 포함하고 있어 full length로 추정되어지는 것으로 2562 bp에 stop codon이 존재했으며, 두 번째는 7번째 exon 1187 bp에 stop codon을 가지고 있으며 12개의 exon으로 구성되어 있다. 세 번째는 10개의 exon과 9개의 intron을 포함하고 있으며 7번째 exon에 stop codon이 존재했다. Splice variants로서 intron에 나타난 stop codon으로 인해 활성단백질의 합성이 일어나지 않을 것이며 비활성 단백질을 생성하거나 원래의 GHF74의 기능이 아닌 다른 새로운 기능을 갖는 단백질을 생성할 수 있을 것으로 사료된다.

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola

  • Shin, Keum;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1415-1423
    • /
    • 2010
  • An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.

Purification and Characterization of a Thermostable Cellobiohydrolase from Fomitopsis pinicola

  • Shin, Keum;Kim, Yoon-Hee;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1681-1688
    • /
    • 2010
  • A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a $t_{1/2}$ value of 42 h at $70^{\circ}C$ and catalytic efficiency of $15.8mM^{-1}s^{-1}(k_{cat}/K_m)$ for p-nitrophenyl-${\beta}$-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.

Saci_1816: A Trehalase that Catalyzes Trehalose Degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

  • Lee, Junho;Lee, Areum;Moon, Keumok;Choi, Kyoung-Hwa;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.909-916
    • /
    • 2018
  • Previously, a cytosolic trehalase (TreH) from the hyperthermophilic archaeon Sulfolobus acidocaldarius was reported; however, the gene responsible for the trehalase activity was not identified. Two genes, saci_1816 and saci_1250, that encode the glycoside hydrolase family 15 type glucoamylase-like proteins in S. acidocaldarius were targeted and expressed in Escherichia coli, and their abilities to hydrolyze trehalose were examined. Recombinant Saci_1816 hydrolyzed trehalose exclusively without any help from a cofactor. The mass spectrometric analysis of partially purified native TreH also confirmed that Saci_1816 was involved in proteins exhibiting trehalase activity. Optimal trehalose hydrolysis activity of the recombinant Saci_1816 was observed at pH 4.0 and $60^{\circ}C$. The pH dependence of the recombinant enzyme was similar to that of the native enzyme, but its optimal temperature was $20-25^{\circ}C$ lower, and its thermostability was also slightly reduced. From the biochemical and structural results, Saci_1816 was identified as a trehalase responsible for trehalose degradation in S. acidocaldarius. Identification of the treH gene confirms that the degradation of trehalose in Sulfolobus species occurs via the TreH pathway.

Characterization of a Glycoside Hydrolase Family 50 Thermostable β-agarase AgrA from Marine Bacteria Agarivorans sp. AG17

  • Nikapitiya, Chamilani;Oh, Chul-Hong;Lee, Young-Deuk;Lee, Suk-Kyoung;Whang, Il-Son;Lee, Je-Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제13권1호
    • /
    • pp.36-48
    • /
    • 2010
  • An agar-degrading Agarivorans sp. AG17 strain was isolated from the red seaweed Grateloupia filicina collected from Jeju Island. A beta-agarase gene from Agarivorans sp. AG17 was cloned and designated as agrA. agrA has a 2,985 bp coding region encoding 995 amino acids and was classified into the glycoside hydrolase family (GHF)-50. Predicted molecular mass of the mature protein was 105 kDa. His-tagged agrA was overexpressed in Escherichia coli and purified as a fusion protein. The enzyme showed 158.8 unit/mg specific activity (optimum temperature at $65^{\circ}C$ and pH 5.5 in acetate buffer) with unique biochemical properties (high thermal and pH stabilities). Enzyme produced neoagarohexaose, neoagarotetraose and neoagarobiose by degrading agar, and hydrolyzed neoagaro-oligosaccharides were biologically active. Hence the purified enzyme has potential for use in industrial applications such as the development of cosmetics and pharmaceuticals.

Cloning, Expression, and Characterization of a Glycoside Hydrolase Family 118 ${\beta}$-Agarase from Agarivorans sp. JA-1

  • Lee, Dong-Geun;Jeon, Myong Je;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1692-1697
    • /
    • 2012
  • We report a glycoside hydrolase (GH)-118 ${\beta}$-agarase from a strain of Agarivorans, in which we previously reported recombinant expression and characterization of the GH-50 ${\beta}$-agarase. The GH comprised an open reading frame of 1,437 base pairs, which encoded a protein of 52,580 daltons consisting of 478 amino acid residues. Assessment of the entire sequence showed that the enzyme had 97% nucleotide and 99% amino acid sequence similarities to those of GH-118 ${\beta}$-agarase from Pseudoalteromonas sp. CY24, which belongs to a different order within the same class. The gene corresponding to a mature protein of 440 amino acids was inserted, recombinantly expressed in Escherichia coli, and purified to homogeneity with affinity chromatography. It had maximal activity at $35^{\circ}C$ and pH 7.0 and had 208.1 units/mg in the presence of 300 mM NaCl and 1 mM $CaCl_2$. More than 80% activity was maintained after 2 h exposure to $35^{\circ}C$; however, < 40% activity remained at $45^{\circ}C$. The enzyme hydrolyzed agarose to yield neoagarooctaose as the main product. This enzyme could be useful for industrial production of functional neoagarooligosaccharides.