DOI QR코드

DOI QR Code

Purification and Characterization of a Thermostable Cellobiohydrolase from Fomitopsis pinicola

  • Shin, Keum (Department of Forest Products, Kookmin University) ;
  • Kim, Yoon-Hee (Department of Forest Products, Kookmin University) ;
  • Jeya, Marimuthu (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Yeong-Suk (Department of Forest Products, Kookmin University)
  • Received : 2010.08.09
  • Accepted : 2010.09.13
  • Published : 2010.12.28

Abstract

A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a $t_{1/2}$ value of 42 h at $70^{\circ}C$ and catalytic efficiency of $15.8mM^{-1}s^{-1}(k_{cat}/K_m)$ for p-nitrophenyl-${\beta}$-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.

Keywords

References

  1. Baldeian, P. and V. Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  2. Baldrian, V. P. 2006. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus - production of extracellular enzymes and characterization of the major cellulases. Microbiology 152: 3613-3622. https://doi.org/10.1099/mic.0.29149-0
  3. Bayer, E. A., H. Chanzy, R. Lamed, and Y. Shoham. 1998. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8: 548-557. https://doi.org/10.1016/S0959-440X(98)80143-7
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Bradstreet, R. B. 1954. Kjedahl method for organic nitrogen. Anal. Chem. 26: 185-187. https://doi.org/10.1021/ac60085a028
  6. Bukhtojarov, F. E., B. B. Ustinov, T. N. Salanovich, A. L. Antonov, A. V. Gusakov, O. N. Okunev, and A. P. Sinitsyn. 2004. Cellulose complex of the fungus Chrysosporium lucknowense: Isolation and characterization of endogluconases and cellobiohydrolases. Biochemistry 69: 542-551.
  7. Cao, W. G. and D. L. Crawford. 1993. Purification and some properties of $\beta$-glucosidase from the etcomycorrhizal fungus Piptoporus betulinus strain Smf. Can. J. Microbiol. 39: 125-129.
  8. Deshpande, M. V., K. E. Eriksson, and L. G. Pettersson. 1984. An assay for selective determination of exo-1,4-$\beta$-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 138: 481-487. https://doi.org/10.1016/0003-2697(84)90843-1
  9. Divne, C., J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson, J. K. Knowles, T. T. Teeri, and T. A. Jones. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265: 524-528. https://doi.org/10.1126/science.8036495
  10. Edwards, I. P., R. A. Upchurch, and R. Z. Donald. 2008. Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by a PCR. Appl. Environ. Microbiol. 74: 3481-3489. https://doi.org/10.1128/AEM.02893-07
  11. Grassick, A., P. G. Murray, R. Thompson, C. M. Collins, L. Byrnes, G. Birrane, T. M. Higgins, and M. G. Tuohy. 2004. Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur. J. Biochem. 271: 4495-4506. https://doi.org/10.1111/j.1432-1033.2004.04409.x
  12. Gusakov, A. V., T. N. Salanovich, A. I. Antonov, B. B. Ustinov, O. N. Okunev, R. Burlingame, M. Emalfarb, M. Baez, and P. Arkady. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97: 1028-1038. https://doi.org/10.1002/bit.21329
  13. Gusakov, A. V., A. P. Sinitsyn, T. N. Salanovich, F. E. Bukhtojarov, A. V. Markov, B. B. Ustinov, C. van Zeijl, P. Punt, and R. Burlingame. 2005. Purification, cloning and characterization of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enz. Microbial Technol. 36: 57-69. https://doi.org/10.1016/j.enzmictec.2004.03.025
  14. Haakana, H., A. Miettinen-Oinonen, V. Joutsjoki, A. Mantyla, P. Suominen, and J. Vehmaanpera. 2004. Cloning of cellulose genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enz. Microbial Technol. 34: 159-167. https://doi.org/10.1016/j.enzmictec.2003.10.009
  15. Hamada, N., K. Ishikawa, N. Fuse, R. Kodaira, M. Shimosaka, Y. Amano, T. Kanda, and M. Okazaki, 1999. Purification, characterization and gene analysis of exo-cellulase II (Ex-2) from the white rot basidiomycete Irpex lacteus. J. Biosci. Bioeng. 87: 442-451. https://doi.org/10.1016/S1389-1723(99)80092-9
  16. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarity. Biochem. J. 280: 309-316.
  17. Hong, J., H. Tamaki, K. Yamamoto, and H. Kumagai. 2003. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl. Microbiol. Biotechnol. 63: 42-50. https://doi.org/10.1007/s00253-003-1379-3
  18. Jia, J., P. S. Dyer, and J. F. Buswell. 1999. Cloning of the CBHI and CBHII genes involved in cellulose utilization by the straw mushroom Volvariella volvacea. Mol. Gen. Genet. 261: 985-993. https://doi.org/10.1007/s004380051047
  19. Kerem, Z., K. Jensen, and K. Hammel. 1999. Biodegradative mechanism of the brown rot basidiomycete Gloephyllum trabeum: Evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett. 446: 49-54. https://doi.org/10.1016/S0014-5793(99)00180-5
  20. Koch, A., C. T. Weigel, and G. Schulz. 1993. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbh1) from Penicillium janthinellum. Gene 124: 57-65. https://doi.org/10.1016/0378-1119(93)90761-Q
  21. Konstantinidis, A. K., I. Marsden, and M. L. Sinnott. 1993. Hydrolyses of alpha- and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. J. Biochem. 291: 883-888.
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  23. Lahjouji, K., R. Storms, Z. Xiao, K. B. Joung, Y. Zheng, J. Powlowski, A. Tsang, and L. Varin. 2007. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. 75: 337-346. https://doi.org/10.1007/s00253-006-0824-5
  24. Lee, C. C., D. W. Wong, and G. H. Robertson. 2001. Cloning and characterization of two cellulose genes from Lentinula edodes. FEMS Microbiol. Lett. 205: 355-360. https://doi.org/10.1111/j.1574-6968.2001.tb10972.x
  25. Liete, R. S. R., E. Gomes, and R. Da-Silva. 2007. Characterization of $\beta$-glucosidases from a mesophilic Aureobasidium pullulana and thermophilic Thermoascus aurantiacus. Process Biochem. 42: 1101-1106. https://doi.org/10.1016/j.procbio.2007.05.003
  26. Limam, F., S. E. Chaabouni, R. Ghrir, and N. Marzouki. 1995. Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enz. Microbial Technol. 17: 340-346. https://doi.org/10.1016/0141-0229(94)00033-6
  27. Lin, J., B. Pillay, and S. Singh. 1999. Purification and biochemical characterization of $\beta$-glucosidase from a thermophilic fungus, Thermomyces lanuginosus - SSBP. Biotechnol. Appl. Biochem. 30: 81-87.
  28. Li, Y. L., D. C. Li, and F. C. Teng. 2006. Purification and characterization of a cellobiohydrolase from the thermophilic fungus Chaetomium thermophilus CT2. Wei Sheng Wu Xue Bao 46: 143-146.
  29. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  30. Munoz, I. G., W. Ubhayaseker, H. Henriksson, I. Szabo, G. Pettersson, G. Johansson, S. L. Mowbray, and J. Stahlberg. 2001. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: Crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. J. Mol. Biol. 314: 1097-1111. https://doi.org/10.1006/jmbi.2000.5180
  31. Nikolova, P. V., A. L. Creagh, S. J. B. Duff, and C. A. Haynes. 1997. Thermostability and irreversible activity loss of exoglucanase/xylanase Cex from Cellulomonas fimi. J. Biochem. 36: 1381-1388. https://doi.org/10.1021/bi962367f
  32. Parkkinen, T., A. Koivula, J. Vehmaanpera, and J. Rouvinen. 2008. Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci. 17: 1383-1394. https://doi.org/10.1110/ps.034488.108
  33. Percival Zhang, Y. H., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulose improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  34. Rouau, X. and E. Odier. 1986. Purification and properties of 2 enzymes from Duchomitus squalens which exhibit both cellobiohydrolase and xylanase activity. Carbohydr. Res. 145: 279-292. https://doi.org/10.1016/S0008-6215(00)90435-X
  35. Schmidhalter, D. R. and G. Canevascini. 1993. Purification and characterization of two exo-cellobiohydrolases from the brownrot fungus Coniophora puteana (Schum ex Fr) Karst. Arch. Biochem. Biophy. 300: 551-558. https://doi.org/10.1006/abbi.1993.1076
  36. Teeri, T. T. 1997. Crystalline cellulose degradation: New insight into the function of cello-biohydrolases. Trends Biotechnol. 15: 160-167. https://doi.org/10.1016/S0167-7799(97)01032-9
  37. Teeri, T. T., P. Lehtovaara, S. Kauppinen, I. Salovuori, and J. Knowles. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: Gene sequence and expression of cellobiohydrolase II. J. Gene 51: 43-52. https://doi.org/10.1016/0378-1119(87)90472-0
  38. Tuohy, M. G., D. J. Walsh, P. G. Murray, M. Claeyssens, M. Cuffe, A. V. Savage, and M. P. Coughlan. 2002. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. Biophys. Acta 1596: 366-380. https://doi.org/10.1016/S0167-4838(01)00308-9

Cited by

  1. Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844 vol.21, pp.8, 2011, https://doi.org/10.4014/jmb.1010.10037
  2. Rational design, synthesis, evaluation and enzymesubstrate structures of improved fluorogenic substrates for family?6 glycoside hydrolases vol.280, pp.1, 2010, https://doi.org/10.1111/febs.12060
  3. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance vol.110, pp.25, 2010, https://doi.org/10.1073/pnas.1301502110
  4. Ethanol Production from Lignocellulosic Biomass Using Xylotrophic Basidiomycetes vol.51, pp.5, 2010, https://doi.org/10.1007/s10553-015-0633-6
  5. Optimization of cellobiohydrolase production and secretome analysis of Trametes villosa LBM 033 suitable for lignocellulosic bioconversion vol.26, pp.1, 2010, https://doi.org/10.1080/25765299.2019.1598107
  6. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  7. Characterization of Cellobiohydrolases from Schizophyllum commune KMJ820 vol.60, pp.2, 2010, https://doi.org/10.1007/s12088-019-00843-9
  8. Characterization of two GH5 endoglucanases from termite microbiome using synthetic metagenomics vol.104, pp.19, 2010, https://doi.org/10.1007/s00253-020-10831-5