• Title/Summary/Keyword: Glycation

Search Result 159, Processing Time 0.041 seconds

Biological Activity and Inhibition of Non-Enzymatic Glycation by Methanolic Extract of Rosa davurica Pall. Roots

  • Hu, Weicheng;Han, Woong;Jiang, Yunyao;Wang, Myeong-Hyeon;Lee, Young-Mee
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.242-247
    • /
    • 2011
  • The methanolic extract of Rosa davurica Pall. roots exhibited strong antioxidant activity in a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay and was found to be a dose-dependent inhibitor of non-enzymatic formation of advanced glycation end products (AGEs), which are relevant to diabetes complications. HPLC-diode array detector (DAD) analysis of the R. davurica Pall. root extract led to the identification of four compounds: hydrocaffeic acid, catechin, epicatechin, and ellagic acid. Catechin was present in the largest amount and exhibited high antiglycation activity. A CYP3A4 assay was used to investigate potential interactions between drugs and the extract, and results suggest that the R. davurica Pall. root extract had moderate potential for interfering with drug metabolism. The R. davurica Pall. extract did not display anti-inflammatory activity on the level of that for tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in a lipopolysaccharide (LPS)-stimulated macrophage assay; however, the extract did exhibit low to moderate immunostimulatory activity in a pro-inflammatory macrophage assay. Therefore, we conclude that R. davurica Pall. root is a promising anti-AGE agent with low to moderate risks of associated inflammation or drug interaction.

Korean red ginseng extract alleviates advanced glycation end product-mediated renal injury

  • Quan, Hai Yan;Kim, Do Yeon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.187-193
    • /
    • 2013
  • The effect of Korean red ginseng (KRG) on diabetic renal damage was investigated using streptozotocin (STZ)-induced diabetic rats. The diabetic rats showed loss of body weight gain, and increases in kidney weight and urine volume, whereas the oral administration of KRG at a dose of 100 or 250 mg/kg of body weight per day for 28 d prevented these diabetes-induced physiological abnormalities. Among the kidney function parameters, elevated plasma levels of urea nitrogen and creatinine in diabetic control rats tended to be lowered in KRG-treated rats. In addition, administration of KRG at a dose of 100 mg/kg body weight in the diabetic rats showed significant decreases in serum glucose and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that KRG might prevent the pathogenesis of diabetic complications caused by impaired glucose metabolism and oxidative stress. KRG also significantly reduced advanced glycation end product (AGE) formation and secretion from kidney of diabetic rats. Furthermore, KRG decreased the levels of N-(carboxymethyl) lysine and expression of AGE receptor. KRG also reduced the overexpression of cyclooxygenase-2 and inducible nitric oxide synthase in the kidney via deactivation of nuclear factor-kappa B. We also found that KRG prevented STZ-induced destruction of glomerular structure and significantly suppressed high glucose-induced fibronectin production. Taken together, KRG ameliorates abnormalities associated with diabetic nephropathy through suppression of inflammatory pathways activated by TNF-${\alpha}$ and AGEs. These findings indicate that KRG has a beneficial effect on pathological conditions associated with diabetic nephropathy.

Inhibitory Activity of Advanced Glycation Endproducts (AGEs) Formation and Antioxidant Activity of Processed Korean Medicines (포제한약재의 최종당화산물 생성 억제 활성 및 항산화 효과)

  • Lee, AhReum;Kwon, OJun;Choi, JoonYoung;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • Objectives : Advanced glycation end product (AGEs) is combine formation of glucose and protein. AGEs and reactive oxygen species are potential therapeutic targets for the various disease such as diabetic complications, renal injury, skin damage. The aim of this study was investigated the AGEs inhibitory activity and antioxidant activity of water extracts from 40 Korean medicines and 5 heating-processed Korean medicines. Methods: AGEs formation inhibitory activities of Korean medicines measured using bovine serum albumin (BSA), glucose, and fructose. Then, five effective Korean medicines were selected and heated with 30% ethanol. The AGEs inhibitory activities of heated Korean medicine were measured compared with not-heated Korean medicines. The antioxidant activities were evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals. Furthermore, we examined total phenol and flavonoids contents. Results: Scutellariae Radix, Corni Fructus, Persimmon Fruit, Paeoniae Radix, Mori Folium respectively reduced AGEs production. Morever, heating-processed Scutellariae Radix has AGEs inhibitory activities better than not-processed Scutellariae Radix. Heating- processed Scutellariae Radix scavenged DPPH and ABTS effectively and $IC_{50}$ of DPPH and ABTS radical scavenging activity of Heat processed Scutellariae Radix were $15.47{\pm}0.26{\mu}g/m{\ell}$ and $12.07{\pm}1.23{\mu}g/m{\ell}$. It caused heat processing methods of Scutellariae Radix up regulated total phenol and flavonoids contents ($26.68{\pm}0.01$ to $46.15{\pm}0.10$, $20.30{\pm}0.38$ to $64.20{\pm}0.52$). Conclusion: It has AGEs inhibitory activities that 20 kind of medicinal plants of 40 medicinal plants. Especially, heat processed Scutellariae Radix has excellent AGEs inhibitory activities and antioxidant effect.

Preventive Effects of Rosa rugosa Root Extract on Advanced Glycation End product-Induced Endothelial Dysfunction (해당근 추출물의 항산화 활성 및 최종당화산물에 의한 혈관내피세포 기능장애 억제활성)

  • Nam, Mi-Hyun;Lee, Hyun-Sun;Hong, Chung-Oui;Koo, Yoon-Chang;Seo, Mun-Young;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.210-216
    • /
    • 2010
  • Rosa rugosa has traditionally been used as a folk remedy for diabetes. The objective of this study was therefore to demonstrate the inhibition of endothelial dysfunction activities through antioxidants and the anti-glycation of Rosa rugosa roots. Dried roots of Rosa rugosa were boiled in methanol for three hours, evaporated and lyophilized with a freeze-dryer. The methanolic extract of Rosa rugosa roots (RRE) was tested for antioxidant activities by measuring total polyphenol (TP) content, flavonoid content, 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging activity (DPPH) assay, and ferric-reducing antioxidant power (FRAP) assay. The total TP content, flavonoid content, FRAP value, and $DPPHSC_{50}$ are $345.2\;{\mu}g$ gallic acid equivalents/mg dry matter (DM), $128.1\;{\mu}g$ quercetin equivalents/mg DM, 2.2 mM $FeSO_4$/mg DM and $34.2\;{\mu}g$ DM/mL, respectively. Treatment of RRE significantly lowered fluorescent formation due to advanced glycation reaction. In addition, reactive oxygen species (ROS) scavenging assay, monocyte adherent assay and transendothelial electrical resistance (TEER) assay were performed to investigate the possibility that RRE improves endothelial dysfunction-induced diabetic complications. The adhesion of THP-1 to treated HUVEC with RRE ($100\;{\mu}g/mL$; 33% and $500\;{\mu}g/mL$; 75%) was significantly reduced compared to HUVEC stimulated by glyceraldehydes-AGEs (advanced glycation end product). The TEER value ($88\;{\Omega}{\cdot}cm^2$) of stimulated HUVEC by glyceraldehydes-AGEs was reduced compared to non-stimulation ($113\;{\Omega}{\cdot}cm^2$). However, normalization with RRE increased endothelial permeability in a dose-dependent manner ($100\;{\mu}g/mL$; $102\;{\Omega}{\cdot}cm^2$ and $500\;{\mu}g/mL$; $106\;{\Omega}{\cdot}cm^2$). Thus, these results suggest that Rosa rugosa roots could be a novel candidate for the prevention of diabetic complications through antioxidants and inhibition of advanced glycation end product formation.

Biological Potential of Enzymatic and Polyphenol Extracts from Ecklonia cava (감태 효소 추출물 및 폴리페놀 추출물의 생리활성에 관한 연구)

  • Lee, Su Min;Kim, Jin Eun;Oh, Myoung Jin;Lee, Joo Dong;Jeon, You-Jin;Kim, Bora
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • To investigate the efficacy of enzymatic extract of Ecklonia cava and its polyphenol extract (AG-DK) as cosmetic ingredients, the anti-oxidative effect, anti-glycation effect, anti-melanogenic effect, and anti-inflammatory effect of the extracts were evaluated in vitro. The enzymatic extract of E. cava ($SC_{50}$ 42.9 ppm) and AG-DK ($SC_{50}$ 6.4 ppm) showed a strong DPPH free radical scavenging activity. The anti-glycation ability of the enzymatic extract of E. cava and AG-DK was tested using bovine serum albumin (BSA), which inhibited the formation of advanced glycation end-products (AGEs) in the BSA/glucose system. The enzymatic extract of E. cava ($IC_{50}$ 97.2 ppm) and AG-DK ($IC_{50}$ 7 ppm) had inhibitory effects on tyrosinase activity. Moreover, the enzymatic extract of E. cava and AG-DK had an anti-inflammatory effect through the inhibition of nitricoxide (NO) and prostaglandin E2 ($PGE_2$). These findings suggest that the enzymatic extract of E. cava and AG-DK can be applied to skin-care products as cosmetic ingredients.

Association between hemoglobin glycation index and cardiometabolic risk factors in Korean pediatric nondiabetic population

  • Lee, Bora;Heo, You Jung;Lee, Young Ah;Lee, Jieun;Kim, Jae Hyun;Lee, Seong Yong;Shin, Choong Ho;Yang, Sei Won
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.196-203
    • /
    • 2018
  • Purpose: The hemoglobin glycation index (HGI) represents the degree of nonenzymatic glycation and has been positively associated with cardiometabolic risk factors (CMRFs) and cardiovascular disease in adults. This study aimed to investigate the association between HGI, components of metabolic syndrome (MS), and alanine aminotransferase (ALT) in a pediatric nondiabetic population. Methods: Data from 3,885 subjects aged 10-18 years from the Korea National Health and Nutrition Examination Survey (2011-2016) were included. HGI was defined as subtraction of predicted glycated hemoglobin ($HbA1_c$) from measured $HbA1_c$. Participants were divided into 3 groups according to HGI tertile. Components of MS (abdominal obesity, fasting glucose, triglycerides, high-density lipoprotein cholesterol, and blood pressure), and proportion of MS, CMRF clustering (${\geq}2$ of MS components), and elevated ALT were compared among the groups. Results: Body mass index (BMI) z-score, obesity, total cholesterol, ALT, abdominal obesity, elevated triglycerides, and CMRF clustering showed increasing HGI trends from lower-to-higher tertiles. Multiple logistic regression analysis showed the upper HGI tertile was associated with elevated triglycerides (odds ratio, 1.65; 95% confidence interval, 1.18-2.30). Multiple linear regression analysis showed HGI level was significantly associated with BMI z-score, $HbA1_c$, triglycerides, and ALT. When stratified by sex, age group, and BMI category, overweight/obese subjects showed linear HGI trends for presence of CMRF clustering and ALT elevation. Conclusion: HGI was associated with CMRFs in a Korean pediatric population. High HGI might be an independent risk factor for CMRF clustering and ALT elevation in overweight/obese youth. Further studies are required to establish the clinical relevance of HGI for cardiometabolic health in youth.

Correlation of advanced glycation end products and heme oxygenase-1 in Korean diabetic patients (제2형 당뇨병 환자에서 최종당화산물과 heme oxygenase-1의 상관성)

  • Choi, Ha-Neul;Koo, Da-Hye;Yim, Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.55 no.3
    • /
    • pp.348-358
    • /
    • 2022
  • Purpose: Hyperglycemia accelerates the formation of advanced glycation end products (AGEs), a group of compounds formed via non-enzymatic glycation/glycoxidation. Type 2 diabetes mellitus (T2DM) is related to oxidative stress, resulting in some overgeneration of AGEs. The accumulation of AGEs in T2DM patients leads to increased inflammation, DNA damage, tissue damage, progression of diabetic microvascular disease, and nephropathy. Heme oxygenase-1 (HO-1) is an intracellular enzyme that catalyzes the oxidation of heme. Expression of HO-1 in the endothelium and in muscle monocytes/macrophages was upregulated upon exposure to reactive oxygen species or oxidized low-density lipoprotein. Cells activated by oxidative stress are reported to release HO-1 in the serum. In the current study, we discuss the oxidative status according to the level of AGEs and the association of HO-1 with AGEs or urinary DNA damage marker in type 2 diabetic Korean patients. Methods: This study enrolled 36 diabetic patients. Subjects were classified into two groups by serum AGEs level (Low AGEs group: < 0.85 ng/mL serum AGEs; High AGEs group: ≥ 0.85 ng/mL serum AGEs). Body composition was measured using bioelectrical impedance analysis. Blood and urinary parameters were measured using commercial kits. Results: No significant differences were observed in the general characteristics and body composition between the two groups. Serum HO-1 concentration was significantly higher in the High AGEs group than in the Low AGEs group. After adjustment of age and gender, a correlation was performed to assess the association between serum HO-1 and serum AGEs or urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG). Our results indicate that serum HO-1 is positively correlated with serum AGEs and urinary 8-OHdG. Conclusion: Taken together, our results indicate that in diabetes patients, a high level of HO-1 is associated with a high concentration of AGEs and 8-OHdG, probably reflecting a protective response against oxidative stress.

Signaling Interface of Advanced Glycation Endproducts Receptor and Ubiquitin-Conjugating Enzyme Ubc9 Complex in Atherosclerosis and Cancer Cells

  • Kim, June Hyun
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.13.1-13.6
    • /
    • 2012
  • The advanced glycation endproducts receptor (AGER) is a multiligand signal transduction receptor. One of its ligands, S100b molecules activates vascular smooth muscle cells and endothelial cells via its receptor, thus triggering activation of signaling cascades and generation of cytokines and proinflammatory molecules. Ubiquitin-conjugating enzyme Ubc9 is an E2 conjugating enzyme that transfers the activated small ubiquitin-related modifier to protein substrates, and thus it plays a critical role in SUR-Mylation-mediated cellular pathways. Previous studies have shown that both AGE-R and Ubc9 play roles in diverse cellular signaling pathways. However, until recently, little attention has been paid to interactions between AGE-R and Ubc9. In this study, sequence database searches allowed us to identify a potential interaction motif between AGE-R and Ubc9. The subsequent biochemical and molecular biological analysis suggested that there may be specificity in AGE-R and Ubc9 complex signaling in atherosclerosis and cancer cells in a cell-type specific manner. Although the determinant for specificity in AGE-R and Ubc9 complex signaling in cancer cells and atherosclerosis is yet to be determined, this study provides the basis to develop a specific therapeutic application of AGE-R, SURM (small ubiquitin-related modifier)-1, and Ubc9 complex activation pathways in atherosclerosis, diabetes, cancer and inflammatory diseases.