DOI QR코드

DOI QR Code

Signaling Interface of Advanced Glycation Endproducts Receptor and Ubiquitin-Conjugating Enzyme Ubc9 Complex in Atherosclerosis and Cancer Cells

  • Kim, June Hyun (Department of Bioscience and Biotechnology, The University of Suwon)
  • Received : 2012.10.22
  • Accepted : 2012.11.30
  • Published : 2012.12.31

Abstract

The advanced glycation endproducts receptor (AGER) is a multiligand signal transduction receptor. One of its ligands, S100b molecules activates vascular smooth muscle cells and endothelial cells via its receptor, thus triggering activation of signaling cascades and generation of cytokines and proinflammatory molecules. Ubiquitin-conjugating enzyme Ubc9 is an E2 conjugating enzyme that transfers the activated small ubiquitin-related modifier to protein substrates, and thus it plays a critical role in SUR-Mylation-mediated cellular pathways. Previous studies have shown that both AGE-R and Ubc9 play roles in diverse cellular signaling pathways. However, until recently, little attention has been paid to interactions between AGE-R and Ubc9. In this study, sequence database searches allowed us to identify a potential interaction motif between AGE-R and Ubc9. The subsequent biochemical and molecular biological analysis suggested that there may be specificity in AGE-R and Ubc9 complex signaling in atherosclerosis and cancer cells in a cell-type specific manner. Although the determinant for specificity in AGE-R and Ubc9 complex signaling in cancer cells and atherosclerosis is yet to be determined, this study provides the basis to develop a specific therapeutic application of AGE-R, SURM (small ubiquitin-related modifier)-1, and Ubc9 complex activation pathways in atherosclerosis, diabetes, cancer and inflammatory diseases.

Keywords

References

  1. Kim, W., Hudson, B. I., Moser, B., Guo, J., Rong, L. L, Lu, Y., Qu, W., Lalla, E., Lerner, S., Chen, Y., et al. (2005). Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 1043, 553-561. https://doi.org/10.1196/annals.1338.063
  2. Duan, X., Trent, J. O., and Ye, H. (2009). Targeting the SUMO E2 conjugating enzyme Ubc9 interaction for anti-cancer drug design. Anticancer Agents Med Chem 9, 51-54. https://doi.org/10.2174/187152009787047716
  3. Mo, Y. Y., and Moschos, S. J. (2005). Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9, 1203-1216. https://doi.org/10.1517/14728222.9.6.1203
  4. Moschos, S. J., and Mo, Y. Y. (2006). Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J Mol Histol 37, 309-319. https://doi.org/10.1007/s10735-006-9030-0
  5. Niedenthal, R. (2009). Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS). Methods Mol Biol 497, 63-79. https://doi.org/10.1007/978-1-59745-566-4_5
  6. Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A., and Schulman, B. A. (2002). Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem 277, 47938- 47945. https://doi.org/10.1074/jbc.M207442200
  7. Gong, L., Kamitani, T., Fujise, K., Caskey, L. S., and Yeh, E. T. (1997). Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272, 28198-28201. https://doi.org/10.1074/jbc.272.45.28198
  8. Reverter, D., and Lima, C. D. (2004). A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519-1531. https://doi.org/10.1016/j.str.2004.05.023
  9. Shimada, K., Suzuki, N., Ono, Y., Tanaka, K., Maeno, M., and Ito, K. (2008). Ubc9 promotes the stability of Smad4 and the nuclear accumulation of Smad1 in osteoblast-like Saos-2 cells. Bone 42, 886-893. https://doi.org/10.1016/j.bone.2008.01.009
  10. Zhu, S., Sachdeva, M., Wu, F., Lu, Z., and Mo, Y. Y. (2010). Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29, 1763-1772. https://doi.org/10.1038/onc.2009.459
  11. McDoniels-Silvers, A. L., Nimri, C. F., Stoner, G. D., Lubet, R. A., and You, M. (2002). Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin Cancer Res 8, 1127-1138.
  12. Mo, Y. Y., Yu, Y., Theodosiou, E., Ee, P. L., and Beck, W. T. (2005). A role for Ubc9 in tumorigenesis. Oncogene 24, 2677-2683. https://doi.org/10.1038/sj.onc.1208210
  13. Moschos, S. A., Williams, A. E., Perry, M. M., Birrell, M. A., Belvisi, M. G., and Lindsay, M. A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharideinduced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8, 240. https://doi.org/10.1186/1471-2164-8-240
  14. Wu, C. J., Cai, T., Rikova, K., Merberg, D., Kasif, S., and Steffen, M. (2009). A predictive phosphorylation signature of lung cancer. PLoS One 4, e7994. https://doi.org/10.1371/journal.pone.0007994
  15. Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95, 7987-7992. https://doi.org/10.1073/pnas.95.14.7987
  16. Huggins, G. S., Chin, M. T., Sibinga, N. E., Lee, S. L., Haber, E., and Lee, M. E. (1999). Characterization of the mUBC9-binding sites required for E2A protein degradation. J Biol Chem 274, 28690-28696. https://doi.org/10.1074/jbc.274.40.28690
  17. Wu, F., Zhu, S., Ding, Y., Beck, W. T., and Mo, Y. Y. (2009). MicroRNAmediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15, 1550-1557. https://doi.org/10.1158/1078-0432.CCR-08-0820
  18. Lu, Z., Wu, H., and Mo, Y. Y. (2006). Regulation of bcl-2 expression by Ubc9. Exp Cell Res 312, 1865-1875. https://doi.org/10.1016/j.yexcr.2006.02.017
  19. Mo, Y. Y., Yu, Y., Ee, P. L., and Beck, W. T. (2004). Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 64, 2793-2798. https://doi.org/10.1158/0008-5472.CAN-03-2410
  20. Ahn, J. H., Xu, Y., Jang, W. J., Matunis, M. J., and Hayward, G. S. (2001). Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 75, 3859-3872. https://doi.org/10.1128/JVI.75.8.3859-3872.2001
  21. Chiu, M. W., Shih, H. M., Yang, T. H., and Yang, Y. L. (2007). The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). J Biomed Sci 14, 429-444. https://doi.org/10.1007/s11373-007-9151-9
  22. Mishra, R. K., Jatiani, S. S., Kumar, A., Simhadri, V. R., Hosur, R. V., and Mittal, R. (2004). Dynamin interacts with members of the sumoylation machinery. J Biol Chem 279, 31445-31454. https://doi.org/10.1074/jbc.M402911200
  23. Sampson, D. A., Wang, M., and Matunis, M. J. (2001). The small ubiquitin- like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276, 21664-21669. https://doi.org/10.1074/jbc.M100006200
  24. Libby, P. (2002). Inflammation in atherosclerosis. Nature 420, 868-874. https://doi.org/10.1038/nature01323
  25. Keren, P., George, J., Shaish, A., Levkovitz, H., Janakovic, Z., Afek, A., Goldberg, I., Kopolovic, J., Keren, G., and Harats, D. (2000). Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptordeficient mice: establishment of a combined model and association with heat shock protein 65 immunity. Diabetes 49, 1064-1069. https://doi.org/10.2337/diabetes.49.6.1064
  26. Roque, M., Kim, W. J., Gazdoin, M., Malik, A., Reis, E. D., Fallon, J. T., Badimon, J. J, Charo, I. F., and Taubman, M. B. (2002). CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 22, 554-559. https://doi.org/10.1161/hq0402.105720
  27. Toyama, K., Wulff, H., Chandy, K. G., Azam, P., Raman, G., Saito, T., Fujiwara, Y., Mattson, D. L., Das, S., Melvin, J. E., et al. (2008). The intermediate- conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118, 3025-3037. https://doi.org/10.1172/JCI30836
  28. Chin, G. S., Kim, W. J., Lee, T. Y., Liu, W., Saadeh, P. B., Lee, S., Levinson, H., Gittes, G. K., and Longaker, M. T. (2000). Differential expression of receptor tyrosine kinases and Shc in fetal and adult rat fibroblasts: toward defining scarless versus scarring fibroblast phenotypes. Plast Reconstr Surg 105, 972-979. https://doi.org/10.1097/00006534-200003000-00021
  29. Hudson, B. I., Kalea, A. Z., Del, Mar Arriero M., Harja, E., Boulanger, E., D'Agati, V., and Schmidt, A. M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283, 34457-34468. https://doi.org/10.1074/jbc.M801465200