• 제목/요약/키워드: Glutathione reductase

검색결과 407건 처리시간 0.034초

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Hepatoprotective Effects of Paecilomyces tenuipes Against Carbon Tetrachloride-induced Toxicity in Primary Cultures of Adult Rat Hepatocytes

  • Hyun, Sun-Hee;Jeon, Tae-Won;Lee, Sang-Kyu;Kim, Chun-Hwa;Seo, Young-Min;Kim, Ju-Hyun;Jeong, He-Min;Kang, Mi-Jeong;Lee, Jae-Sung;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • 제23권4호
    • /
    • pp.301-309
    • /
    • 2007
  • Paecilomyces tenuipes (PT), one of the Ascomycetes family, has been used for medicinal purposes due to its broad pharmacological activities. The present study was undertaken to investigate the hepatoprotective effects of PT water extracts against $CCl_4$-induced hepatotoxicity in primary cultures of adult rat hepatocytes. When the extract of PT was directly added into the culture medium at 1, 2, and 5 mg/ml, the extracts not only reduce the $CCl_4$-induced elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase, and lipid peroxide, but also protect cultured hepatocytes from $CCl_4$-induced reduction of reduced glutathione, glutathione reductase, glutathione-S-transferase, glutathione peroxidase, catalase and superoxide dismutase. In addition, the effects of PT water extracts on cytochrome P450 enzymes were relatively marginal, indicating that the hepatoprotective effects of PT extract against $CCl_4$-induced toxicity might not be due to the inhibition of $CCl_4$ activation. In conclusion, the PT extracts were effective in protecting against $CCl_4$ induced hepatotoxicity in hepatocyte cultures, at least in part, by scavenging free radicals, and by modulating enzyme systems involved in cellular oxidative stress.

Red Seaweed (Hypnea Bryodies and Melanothamnus Somalensis) Extracts Counteracting Azoxymethane-Induced Hepatotoxicity in Rats

  • Waly, Mostafa Ibrahim;Al Alawi, Ahmed Ali;Al Marhoobi, Insaaf Mohammad;Rahman, Mohammad Shafiur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5071-5074
    • /
    • 2016
  • Background: Azoxymethane (AOM) is a well-known colon cancer-inducing agent in experimental animals via mechanisms that include oxidative stress in rat colon and liver tissue. Few studies have investigated AOM-induced oxidative stress in rat liver tissue. Red seaweeds of the genera Hypnea Bryodies and Melanothamnus Somalensis are rich in polyphenolic compounds that may suppress cancer through antioxidant properties, yet limited research has been carried out to investigate their anti-carcinogenic and antioxidant influence against AOM-induced oxidative stress in rat liver. Objective: This study aims to determine protective effects of red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts against AOM-induced hepatotoxicity and oxidative stress. Materials and Methods: Sprague-Dawley rats received intraperitoneal injections of AOM, 15 mg/kg body weight, once a week for two consecutive weeks and then orally administered red seaweed (100 mg/kg body-weight) extracts for sixteen weeks. At the end of the experiment all animals were overnight fasted then sacrificed and blood and liver tissues were collected. Results: AOM treatment significantly decreased serum liver markers and induced hepatic oxidative stress as evidenced by increased liver tissue homogenate levels of nitric oxide and malondialdehyde, decreased total antioxidant capacity and glutathione, and inhibition of antioxidant enzymes (catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase and superoxide dismutase). Both red seaweed extracts abolished the AOM-associated oxidative stress and protected against liver injury as evidenced by increased serum levels of liver function markers. In addition, histological findings confirmed protective effects of the two red seaweed extracts against AOM-induced liver injury. Conclusion: Our findings indicate that red seaweed (Hypnea Bryodies and Melanothamnus Somalensis) extracts counteracted oxidative stress-induced hepatotoxicity in a rat model of colon cancer.

Diethylhexyl Phthalate에 노출된 동자개, Pseudobagrus fulvidraco의 항산화 효소활성의 변동 (Changes of Antioxidant Enzyme Activity in Bagrid Catfish, Pseudobagrus fulvidraco Exposed to Diethylhexyl Phthalate)

  • 금유화;지정훈;구자근;강주찬
    • 한국수산과학회지
    • /
    • 제38권5호
    • /
    • pp.304-308
    • /
    • 2005
  • The effects of diethylhexyl phthalate (DEHP) on various oxidative stress responses in liver, kidney and gill tissues of freshwater bagrid catfish Pseudobagrus fulvidraco were investigated under laboratory conditions. Bagrid catfish were intraperitoneally injected with sunflower seed oil containing nominal concentrations of 0, 300 or 900mg DEHP per kilogram of body weight for 3 days and the effects after last injection were assessed in liver, kidney and gill tissues of the exposed organisms. The oxidative stress responses of fish were evaluated by analyzing the level of glutathione (GSH), as well as the activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). After exposure to the DEHP, there were significant decrease in GR, GPx activity and GSH content in liver of fish exposed to 900 mg DEHP per kilogram of body weight compared to the control group. Compared with the control group, significant decreases in renal GPx and GR activity were observed in the DEHP treatment groups (900 mg $kg^{-1}$ bw). However, no significant difference was observed in any oxidative stress responses in gills between the DEHP-treated and the untreated group of fish. The findings of the present investigation show that DEHP induce oxidative stress and the liver was the most affected organ followed by the kidney and gills. Furthermore, the changes of GPx and GR activities may be important indicators of oxidative stress responses but additional study is required to confirm the oxidative stress of DEHP.

어유와 비타민 E 보강 수준이 쥐간의 전암성 병변에 미치는 영향 (High Vitamin E Supplement is Needed to Have an Anticarcinogenic Effect of Fish Oil)

  • 김숙희;강상경;김유미;최혜미
    • Journal of Nutrition and Health
    • /
    • 제31권6호
    • /
    • pp.1014-1023
    • /
    • 1998
  • The influences of fish oil and different levels of vitamin I supplement on hepatocellular chemical carcinogenesis have been studied. Male Sprague-Dawley rats received diethylnitrosamine (DEN)(200mg/kg body weight) and were subjected to two-thirds partial hepatectomy to induce murine chemical hepatocarcinogenic procedure. Placental glutathione S-transferase(GST-P) positive foci area, antioxidant enzymes(Cu/Zn-superoxide dismutase(SOD), catalase, glutathione reductase (GR), total- glutathione peroxidase (TGPx), glutathione S -transferase (GST)), glucose 6-phosphatase (G6Pase) activities, and lipid peroxidation of microsomes(thiobarbituric acid reactive substances (TBARS)) were measured. Experimental animals were fed 15% corn or fish oil with 0, 40, 1,000, 10,000IU vitamin E /kg diet for 8 weeks. Vitamin E supplements decreased the area of GST-P positive foci in both groups. The higher the vitamin E levels, the smaller the area of GST-P positive foci were noticed. Compared to 0 IU vitamin E, 40 IU in corn oil and 1,000 IU in fish oil groups were effective in decreasing G57-P positive foci area. Fish oil groups tended to have smaller area of GST-P positive foci. fish oil groups showed lower body weight, lower activities of Cu/Zn-SOD and TGPx, higher TBARS contents, higher activities of GST, catalase, G6Pase, GR and higher liver/body ratio than corn oil groups. As the level of vitamin I increased, GST-P positive foci count, catalase activities, and TBARS tended to decrease. G6Pase activities tended to increase in both groups. At higher vitamin E levels, GST activities tended to decrease in fish oil groups. These results suggest that vitamin I has suppressive offects on hepatocellular chemical carcinogenesis probably through antioxidant eH:cts decreasing TBARS contents, $H_2O$$_2$, and organic peroxides. fish oil tended to have greated suppressive offects than corn oil on hepatocellular carcinogenesis. (Korean J Nutrition 31(6) : 1014-1023, 1998)

  • PDF

홍삼추출물 투여 후 Paraquat가 투여된 생쥐간에서 Glutathione과 Lipid Peroxidation에 미치는 항산화 효과 (Antioxidative Effects of Korean Red Ginseng Extracts on the Glutathione and Lipid Peroxidation in the Liver of Mouse Treated with Paraquat)

  • 이화재
    • 대한의생명과학회지
    • /
    • 제6권1호
    • /
    • pp.45-53
    • /
    • 2000
  • 본 연구결과에서 볼 때 paraquat독성 생존율 실험에서는 ascorbic acid가 우수하였고, 간조직 내 과산화수소 ($H_2O$$_2$)축적해소는 알콜추출물에서 우수하였으며, GPx활성도 수준은 홍삼지용성추출물과 ascorbic acid에서 우수하였다. 한편 GSH량은 증가되면서 GSSG량이 감소되는 glutathion 환원반응이 우수한 것은 ascorbic acid에서만이 확인되었다. 한편 생체 내 MDA량 감소는 홍삼수용성추출물과 ascorbic acid에서만 우수한 효능을 발휘하였다. 이 같은 실험 결과들로 미루어 볼 때 ascorbic acid가 항산화 효능이 있는 것은 본 실험에서 도 입증되고 있으며, 아울러 홍삼에서도 추출물마다 독특한 항산화 효능이 나타나고 있다.

  • PDF

Combined Effects of Copper and Temperature on Antioxidant Enzymes in the Black Rockfish Sebastes schlegeli

  • Min, Eun Young;Baeck, Su Kyong;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • 제17권3호
    • /
    • pp.345-353
    • /
    • 2014
  • Copper has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in the water but also on the water quality. A laboratory experiment was conducted to assess copper toxicity in the black rockfish Sebastes schlegeli using a panel of antioxidant enzymes, including glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD), at different levels of copper at three water temperatures (WT, 18, 23, $28^{\circ}C$) for 4 days. After exposure to two copper concentrations (100 and $200{\mu}g/L$), GSH levels and GST activities increased significantly, depending on WT (P < 0.05) in the liver, gill, and kidney of the black rockfish. GPx and SOD activities decreased significantly with both increasing WT and copper treatment in the organs of black rockfish (P < 0.05). These changes can be seen as initial responses to temperature stress and as a sustained response to copper exposure. This also indicates that GSH and related enzymes activities were sensitive indexes to stress by toxicants such as copper. The present findings suggest that simultaneous stress due to temperature change and copper exposure can accelerate changes in enzymes activities in the black rockfish. This provides another example of synergism between environmental temperature and pollutants, which may have important implications for the survival of fish in polluted environments during seasonal warming and/or global climate change.

Phaleria macrocarpa Suppresses Oxidative Stress in Alloxan-induced Diabetic Rats by Enhancing Hepatic Antioxidant Enzyme Activity

  • Triastuti, Asih;Park, Hee-Juhn;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • 제15권1호
    • /
    • pp.37-43
    • /
    • 2009
  • Oxidative stress is caused by an imbalance between the production of reactive oxygen and an ability of a biological system, to readily detoxify the reactive intermediates or easily repair the resulting damage. It has been suggested that developmental alloxan-induced liver damage is mediated through increases in oxidative stress. The anti-diabetic effect and antioxidant activity of Phaleria macrocarpa (PM) fractions were investigated in alloxan-induced diabetic rats. After two weeks administration of PM, the liver antioxidant enzyme and hyperglycemic state were evaluated. The results showed that oral administration of PM treatments reduced blood glucose levels in diabetic rats by oral administration (P < 0.05). Serum glutamic-oxaloacetic transaminase (sGOT) and serum glutamic-pyruvate-transaminase (sGPT) were also diminished by PM supplementation. The superoxide dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx) activities, and glutathione (GSH) level in the alloxan-induced diabetic rats were significantly decreased (P < 0.05) compared to those in the normal rats but were restored by PM treatments. PM fractions also repressed the level of malondialdehyde (MDA) in the liver. Glutathione reductase (GR), glutathione-S-transferase (GST) and $\gamma$-glutamylcysteine synthase (GCS) were also reduced in alloxan-induced diabetic rats. PM fractions could restore the GR and GST activities, but the GCS activity was not affected in rat livers. From the results of the present study, the diabetic effect of the butanol fraction of PM against alloxan-induced diabetic rats was concluded to be mediated either by preventing the decline of hepatic antioxidant status or due to its indirect radical scavenging capacity.

The Protective Effects of Isoflavone Extracted from Soybean Paste in Free Radical Initiator Treated Rats

  • Nam, Hye-Young;Min, Sang-Gi;Shin, Ho-Chul;Kim, Hwi-Yool;Fukushima, Michihiro;Han, Kyu-Ho;Park, Woo-Jun;Choi, Kang-Duk;Lee, Chi-Ho
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.586-592
    • /
    • 2005
  • This study was performed to investigate the antioxidant effects of Korean soybean paste extracts (SPE) on 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced liver damage in rats. Thirty healthy Sprague Dawley rats were selected and divided into 5 groups. Isoflavone contents were measured using HPLC technique. The antioxidant activity was measured in the plasma and liver of the rats with the following results. Levels of isoflavone in fermented soy paste, red pepper paste and soy sauce were 28.9, 30.3 and $3.4\;{\mu}g/g$ for daidzein and 244.3, 187.7 and $6.1\;{\mu}g/g$ for genistein, respectively. The activities of glutamate oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were significantly higher in the AAPH-treated group in the SPE-AAPH group (p<0.05). The thiobarbituric acid reactive substance (TBARS) production was significantly increased in the AAPH-treated liver tissue (P<0.05). Glutathione peroxidase (GPx), glutathione reductase (GR) and catalase in the liver were significantly (p<0.05) decreased by AAPH administration. The glutathione (GSH) concentration was higher in the SPE-treated (Ed- confirm) group than in the control and other groups (p<0.05). These results suggest that SPE led to increased anti oxidative activities against AAPH-induced peroxyl radical.

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Vanitha, Manickam Kalappan;Priya, Kalpana Deepa;Baskaran, Kuppusamy;Periyasamy, Kuppusamy;Saravanan, Dhravidamani;Venkateswari, Ramachandran;Mani, Balasundaram Revathi;Ilakkia, Aruldass;Selvaraj, Sundaramoorthy;Menaka, Rajendran;Geetha, Mahendran;Rashanthy, Nadarajah;Anandakumar, Pandi;Sakthisekaran, Dhanapal
    • 대한약침학회지
    • /
    • 제18권3호
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.