• Title/Summary/Keyword: Glutathione peroxidase GPX1

Search Result 206, Processing Time 0.03 seconds

The Effect of Green Tea on the Lipid Composition of Serum and Liver and the Activities of Antioxidative Enzymes in Rats (녹차가 흰쥐의 혈청 및 간의 지질성분과 항산화계 효소 활성도에 미치는 영향)

  • 정희정;유영상
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.1
    • /
    • pp.41-49
    • /
    • 1996
  • This research was performed to Investigate the effects of green tea on the lipid composition of serum and liver and the specific activities of antioxidative enzymes. Male Sprague Dawley rats were fed 10% fat diet with lard and fish oil. Powdered green tea was added to the lard and fish oil diet at the level of 0.1% and 1%. After 6 weeks of feeding, serum and liver were obtained from experimental rats. Then we measured the concentration of total cholesterol, HDL-cholesterol and triglyceride. From liver cytosolic fraction, we analized the specific activities of superoxide dismutase, glutathione peroxidase and glutathione S-transferase. The level of total cholesterol and triglyceride were decreased and the ratio of HDL-cholesterol to total cholesterol was increased by the fish oil in the serum. But in the liver, the level of total cholesterol was increased by the fish oil and green tea than the lard. The specific activities of glutathione S-transferase were more increased in the fish oil than the lard. There was not effect of the green tea of daily dose on the lipid composition of serum and liver and the specific activities of antioxidative enzymes in rats.

  • PDF

Protective Effect of Ursolic Acid from Corni fructus on the Hydrogen Peroxide-induced Damage of HEI-OC1 Auditory Cells (산수유로부터 추출한 ursolic acid가 과산화수소로 손상된 HEI-OC1 청각세포보호에 미치는 영향)

  • Yu, Hyeon-Hee;Seo, Se-Jeong;Hur, Jong-Moon;Park, Rae-Kil;So, Hong-Seob;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1524-1529
    • /
    • 2006
  • The fruits of Cornus officinalis have been used in traditional Oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we showed that the ursolic acid obtained from Corni fructus protected HEI-OC1 auditory cells from hydrogen peroxide cytotoxicity in a dose-dependent fashion. In addition, to investigate the protection mechanism of ursolic acid on hydrogen peroxide cytotoxicity toward HEI-OC1, we measured the effects of ursolic acid on lipid peroxidation and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in hydrogen peroxide treated cells. Ursolic acid (0.05 - 2 ${\mu}g/ml$) had protective effect against the hydrogen peroxide-induced HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. Pre-treatment with ursolic acid significantly attenuated the decrease in activities of CAT and GPX, but SOD activity was not affected by the ursolic acid or hydrogen peroxide. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induce the antioxidant enzymes CAT and GPX.

Effect of ${\beta}-sitosterol$ from Pueraria thunbergiana on the Antioxidant Enzyme Activities in HEI-OC1 Cells (갈근으로부터 추출한 ${\beta}-sitosterol$이 HEI-OC1 세포의 항산화 효소 활성에 미치는 영향)

  • Hwan, Ji-Young;Chang, Hye-Soon;Yu, Hyeon-Hee;Moon, Hae-Dalma;Jeon, Byung-Hun;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.884-890
    • /
    • 2007
  • A mechanism of hair cell damage caused by noise and ototoxic agents is mediated through generation of free radicals and reactive oxygen species(ROS). It is known that most of animals have defense systems of ROS that protect against ROS, and the cochlea of animals also has ROS defense system, which appear efficient in detoxifying ROS generated under normal condition. This system includes several antioxidant enzymes such as superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase (GPX), and glutathione reductase(GR). The radix of Pueraria thunbergiana(P. thunbergiana) is traditionally prescribed to attenuate the clinical manifestation of inner ear dysfunction and various clinical situations including fevers, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol, and treating chronic alcoholism in Oriental Medicine. In the present study, to investigate the protection mechanism of ${\beta}-sitosterol$ from P. thunbergiana on cisplatin cytotoxicity toward HEI-OC1, we measured the effects of ${\beta}-sitosterol$ on activities of SOD, CAT, GPX, and GR in cisplatin treated cells. SOD, CAT, GPX, and GR activities were significantly increased in the presence of 0.001-0.1 ${\mu}g/ml$ of ${\beta}-sitosterol$ compared to the control group. These results indicate that ${\beta}-sitosterol$ protects cisplatin-induced HEI-OC1 cell damage through increasing the antioxidant enzyme system such as SOD, CAT, GPX, and GR.

Effects of Aminotriazole on Lung Toxicity of Paraquat Intoxicated Mice (Paraquat중독에 의한 폐독성에 미치는 Aminotriazole의 영향)

  • Lee, Seung-Il;An, Gi-Wan;Chung, Choon-Hae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.222-230
    • /
    • 1994
  • Background: Paraquat, a widely used herbicide, is extremely toxic, causing multiple organ failure in humans. Paraquat especially leads to irreversible progressive pulmonary fibrosis, which is related to oxygen free radicals. However, its biochemical mechanism is not clear. Natural mechanisms that prevent damage from oxygen free radicals include changes in glutathione level, G6PDH, superoxide dismutase(SOD), catalase, and glutathione peroxidase. The authors think catalase is closely related to paraquat toxicity in the lungs Method: The effects of 3-amino-1,2,4-triazole(aminotriazole), a catalase inhibitor, on mice administered with paraquat were investigated. We studied the effects of aminotriazole on the survival of mice administered with paraquat, by comparing life spans between the group to which paraquat had been administered and the group to which a combination of paraquat and aminotriazole had been administered. We measured glutathion level, glucose 6-phosphate dehydrogenase(G6PDH), superoxide dismutase(SOD), catalase, and glutathione peroxidase(GPx) in the lung tissue of 4 groups of mice: the control group, group A(aminotriazole injected), group B(paraquat administered), group C(paraquat and aminotriazole administered). Results: The mortality of mice administered with paraquat which were treated with aminotriazole was significantly increased compared with those of mice not treated with aminotriazole. Glutathione level in group B was decreased by 20%, a significant decrease compared with the control group. However, this level was not changed by the administration of aminotriazole(group C). The activity of G6PDH in all groups was not significantly changed compared with the control group. The activities of SOD, catalase, and glutathione peroxidase(GPx) in the lung tissue were significantly decreased by paraquat administration(group B); catalase showed the largest decrease. Catalase and GPX were significantly decreased by aminotriazole treatment in mice administered with paraquat but change in SOD activity was not significant(group C). Conclusion: Decrease in catalase activity by paraquat suggests that paraquat toxicity in the lungs is closely related to catalase activity. Paraquat toxicity in mice is enhanced by aminotriazole administration, and its result is related to the decrease of catalase activity rather than glutathione level in the lungs. Production of hydroxyl radicals, the most reactive oxygen metabolite, is accelerated due to increased hydrogen peroxide by catalase inhibition and the lung damage probably results from nonspecific tissue injury of hydroxyl radicals.

  • PDF

Changes of Antioxidant Enzyme Activity in Bagrid Catfish, Pseudobagrus fulvidraco Exposed to Diethylhexyl Phthalate (Diethylhexyl Phthalate에 노출된 동자개, Pseudobagrus fulvidraco의 항산화 효소활성의 변동)

  • KEUM Yoo-Hwa;JEE Jung-Hoon;KOO Ja-Geun;KANG Ju-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.304-308
    • /
    • 2005
  • The effects of diethylhexyl phthalate (DEHP) on various oxidative stress responses in liver, kidney and gill tissues of freshwater bagrid catfish Pseudobagrus fulvidraco were investigated under laboratory conditions. Bagrid catfish were intraperitoneally injected with sunflower seed oil containing nominal concentrations of 0, 300 or 900mg DEHP per kilogram of body weight for 3 days and the effects after last injection were assessed in liver, kidney and gill tissues of the exposed organisms. The oxidative stress responses of fish were evaluated by analyzing the level of glutathione (GSH), as well as the activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR). After exposure to the DEHP, there were significant decrease in GR, GPx activity and GSH content in liver of fish exposed to 900 mg DEHP per kilogram of body weight compared to the control group. Compared with the control group, significant decreases in renal GPx and GR activity were observed in the DEHP treatment groups (900 mg $kg^{-1}$ bw). However, no significant difference was observed in any oxidative stress responses in gills between the DEHP-treated and the untreated group of fish. The findings of the present investigation show that DEHP induce oxidative stress and the liver was the most affected organ followed by the kidney and gills. Furthermore, the changes of GPx and GR activities may be important indicators of oxidative stress responses but additional study is required to confirm the oxidative stress of DEHP.

Effects of Oxidative DNA Damage and Genetic Polymorphism of the Glutathione Peroxidase 1 (GPX1) and 8-Oxoguanine Glycosylase 1 (hOGG1) on Lung Cancer (GPX1 및 hOGG1 유전자다형성에 따른 유전자의 산화적 손상 및 폐암 발생 위험도 평가)

  • Lee, Chul-Ho;Lee, Kye-Young;Choe, Kang-Hyeon;Hong, Yun-Chul;Noh, Sung-Il;Eom, Sang-Yong;Ko, Young-Jun;Zhang, Yan-Wei;Yim, Dong-Hyuk;Kang, Jong-Won;Kim, Heon;Kim, Yong-Dae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.2
    • /
    • pp.130-134
    • /
    • 2006
  • Objectives : Oxidative DNA damage is a known risk factor of lung cancer. The glutathione peroxidase (GPX) antioxidant enzyme that reduces hydrogen peroxide and lipid peroxides plays a significant role in protecting cells from the oxidative stress induced by reactive oxygen species. The aim of this case-control study was to investigate effects of oxidative stress and genetic polymorphisms of the GPX1 genes and the interaction between them in the carcinogenesis of lung cancer. Methods : Two hundreds patients with lung cancer and 200 age- and sex-matched controls were enrolled in this study. Every subject was asked to complete a questionnaire concerning their smoking habits and their environmental exposure to PAHs. The genotypes of the GPX1 and 8-oxoguanine glycosylase 1 (hOGG1) genes were examined and the concentrations of urinary hydroxypyrene (1-OHP), 2-naphthol and 8-hydroxydeoxyguanosine (8-OH-dG) were measured. Results : Cigarette smoking was a significant risk factor for lung cancer. The levels of urinary 8-OH-dG were higher in the patients (p<0.001), whereas the urinary 1-OHP and 2-naphthol levels were higher in the controls. The GPX1 codon 198 polymorphism was associated with an increased risk of lung cancer. Individuals carrying the Pro/Leu or Leu/Leu genotype of GPX1 were at a higher risk for lung cancer (adjusted OR=2.29). In addition, these individuals were shown to have high urinary 8-OH-dG concentrations compared to the individuals with the GPX1 Pro/Pro genotype. On the other hand, the polymorphism of the hOGG1 gene did not affect the lung cancer risk and the oxidative DNA damage. Conclusions : These results lead to a conclusion that individuals with the GPX1 Pro/Leu or Leu/Leu genotype would be more susceptible to the lung cancer induced by oxidative stress than those individuals with the Pro/Pro genotype.

Modulation of Hepatic Lipid Peroxidation and Antioxidant Defenses by Wild Plants Extracts (야생초 추출물에 의한 간장내 활성산소 생성과 항산화 효소계 조절에 관한 연구)

  • Lee, Sang-Young;Kim, Sung-Wan;Kim, Jong-Dai
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 1997
  • This study was performed to elucidate the possible antioxidative effects of several wild plant extracts. Wild plants were extracted with methanol or water using general method. In first experiments, antioxidative effects were measured by lipid peroxidation using rat brain homogenate. Coptis japonica extract showed the highest antioxidative activity among the 15 wild plant extracts. In second experiments, rats were fed on the semipurified diets with or without Coptis japonica extracts at the level of 0.5% for 4 weeks. MDA production of liver homogenate were significantly lower in the rats fed Coptis japonica extracts (P<0.05). Cytosolic catalase. GPX, and SOD activities were not changed, whereas the activities of GST and glutathione level were significantly higher in rats fed Coptis japonica extracts (P<0.05). These results suggest that Coptis japonica extract has an antioxidative effect through increasing GST activity and glutathione level and decreasing MDA production.

  • PDF

Regulation of Nrf2 Mediated Phase II Enzymes by Luteolin in human Hepatocyte

  • Park, Chung Mu
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.56-61
    • /
    • 2014
  • This study attempted to confirm the antioxidative potential of luteolin against tert-butyl hydroperoxide (t-BHP) induced oxidative damage and to investigate its molecular mechanism related to glutathione (GSH)-dependent enzymes in HepG2 cells. Treatment with luteolin resulted in attenuation of t-BHP induced generation of reactive oxygen species (ROS) and oxidative stress-mediated cell death. In addition, accelerated expression of GSH-dependent antioxidative enzymes, glutathione peroxidase (GPx) and glutathione reductase (GR), and heme oxygenase (HO)-1, as well as strengthened GSH content was induced by treatment with luteolin, which was in accordance with increased nuclear translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a transcription factor for phase 2 enzymes, in a dose-dependent manner. These results suggest that the cytoprotective potential of luteolin against oxidative damage can be attributed to fortified GSH-mediated antioxidative pathway and HO-1 expression through regulation of Nrf2 in HepG2 cells.

Effect of Houttuynia cordata Thunb and Herbs Mixture Extract on the Antioxidation in the LPS-induced Hepatotoxicity (LPS 유도 간독성에 대한 어성초 함유 혼합추출물의 항산화 효과)

  • Kwon, Ryun-Hee;Na, Bak-Ju;Park, Si-Jun;Woo, Won-Hong;Lee, Moo-Sik;Mun, Yeun-Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1520-1524
    • /
    • 2007
  • The purpose of this study was to investigate the effects of Houttuynia cordata Thunb and Oriental Herb Mixture Extract (HCTM) through anti-oxidation against the hepatotoxicity-inducing lipopolysaccharide (LPS) in HCTM and LPS-treated rats. HCTM of 100 mg/kg concentration was intraperitoneally administered into rats at dose of 1.5 ml/kg for 20 days. On the day 21, 1.5 ml/kg of LPS was injected 5 hours before anesthetization. The activity of superoxide dismutase (SOD) was measured in mitochondrial fraction and malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPx) were measured in liver homogenate. LPS-treatment markedly increased the levels of MDA and significantly decreased those of SOD, CAT and GPx. But HCTM pretreatment significantly increased those of SOD, CAT and GPx by 86.9%, 57.2% and 72.7% respectively. Moreover HCTM pretreatment decreased the levels of MDA. These results showed the HCTM had the effects against the hepatotoxicity-inducing LPS in the anti-oxidation. This suggested that HCTM could be used for functional beverage.

Augmentation of antioxidant system: Contribution to antimalarial activity of Clerodendrum violaceum leaf extract

  • Balogun, Elizabeth Abidemi;Zailani, Ahmed Hauwa;Adebayo, Joseph Oluwatope
    • CELLMED
    • /
    • v.4 no.4
    • /
    • pp.26.1-26.9
    • /
    • 2014
  • Reactive oxygen species are known to mediate various pathological conditions associated with malaria. In this study, the antioxidant potential of Clerodendrum violaceum leaf extracts, an indigenous antimalarial remedy, was evaluated. Total phenol, flavonoid, selenium, vitamins C and E contents of Clerodendrum violaceum leaf extracts were determined. The free radical scavenging activities of the extracts against DPPH, superoxide anion and hydrogen peroxide coupled with their reducing power were also evaluated in vitro. Moreover, responses of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in a rodent malaria model to a 4-day administration of Clerodendrum violaceum leaf extracts were also evaluated. The methanolic extract was found to contain the highest amounts of antioxidant compounds/element and also demonstrated the highest free radical scavenging activity in vitro. The results showed a significant decrease (p < 0.05) in SOD and CAT activities with a concurrent significant (p < 0.05) increase in GPx and GR activities in both erythrocytes and liver of untreated Plasmodium berghei NK65-infected animals compared to the uninfected animals. The extracts were able to significantly increase (p < 0.05) SOD and CAT activities and significantly reduce (p < 0.05) GPx and GR activities in both the liver and erythrocytes compared to those observed in the untreated infected animals. The results suggest the augmentation of the antioxidant system as one of the possible mechanisms by which Clerodendrum violaceum extract ameliorates secondary effects of malaria infection, alongside its antiplasmodial effect in subjects.