Effect of ${\beta}-sitosterol$ from Pueraria thunbergiana on the Antioxidant Enzyme Activities in HEI-OC1 Cells

갈근으로부터 추출한 ${\beta}-sitosterol$이 HEI-OC1 세포의 항산화 효소 활성에 미치는 영향

  • Hwan, Ji-Young (Department of Oral Biochemistry & VCRC, School of Dentistry, Wonkwang University) ;
  • Chang, Hye-Soon (Department of Food and Nutrition, Kunsan National University) ;
  • Yu, Hyeon-Hee (Department of Food and Nutrition, Kunsan National University) ;
  • Moon, Hae-Dalma (Department of Oral Biochemistry & VCRC, School of Dentistry, Wonkwang University) ;
  • Jeon, Byung-Hun (Department of Pathology, College of oriental Medicine, Wonkwang University) ;
  • You, Yong-Ouk (Department of Oral Biochemistry & VCRC, School of Dentistry, Wonkwang University)
  • 황지영 (원광대학교 치과대학 구강생화학교실) ;
  • 장혜순 (군산대학교 식품영양학과) ;
  • 유현희 (군산대학교 식품영양학과) ;
  • 문해닮아 (원광대학교 치과대학 구강생화학교실) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실) ;
  • 유용욱 (원광대학교 치과대학 구강생화학교실)
  • Published : 2007.08.25

Abstract

A mechanism of hair cell damage caused by noise and ototoxic agents is mediated through generation of free radicals and reactive oxygen species(ROS). It is known that most of animals have defense systems of ROS that protect against ROS, and the cochlea of animals also has ROS defense system, which appear efficient in detoxifying ROS generated under normal condition. This system includes several antioxidant enzymes such as superoxide dismutase(SOD), catalase(CAT), glutathione peroxidase (GPX), and glutathione reductase(GR). The radix of Pueraria thunbergiana(P. thunbergiana) is traditionally prescribed to attenuate the clinical manifestation of inner ear dysfunction and various clinical situations including fevers, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol, and treating chronic alcoholism in Oriental Medicine. In the present study, to investigate the protection mechanism of ${\beta}-sitosterol$ from P. thunbergiana on cisplatin cytotoxicity toward HEI-OC1, we measured the effects of ${\beta}-sitosterol$ on activities of SOD, CAT, GPX, and GR in cisplatin treated cells. SOD, CAT, GPX, and GR activities were significantly increased in the presence of 0.001-0.1 ${\mu}g/ml$ of ${\beta}-sitosterol$ compared to the control group. These results indicate that ${\beta}-sitosterol$ protects cisplatin-induced HEI-OC1 cell damage through increasing the antioxidant enzyme system such as SOD, CAT, GPX, and GR.

Keywords

References

  1. Terry, D., Oberley, Janice, L., Schultz, Ning, L.I., Larry, W. Antioxidant enzyme levels asa function of growth state in cell culture. Free Radical Biology and Medicine 19: 53-65, 1995 https://doi.org/10.1016/0891-5849(95)00012-M
  2. Shindo, Y., Hashimoto, T. Time course of changes in antioxidant enzymes in human skin fibroblasts after UVA irradiation. Journal of Dermatoligical Science 14(3):225-232, 1997 https://doi.org/10.1016/S0923-1811(96)00578-6
  3. Sies. H. Oxidative stress: from basic research to clinical application. The American Journal of Medicine 91(31C):31S-38S, 1991
  4. Gutteridge, J.M., Halliwell, B. Free radicals and antioxidants in the year 2000. A historical look to the future. Annals of the New York Academy of sciences 899: 136-147, 2000 https://doi.org/10.1111/j.1749-6632.2000.tb06182.x
  5. Grisham, M.B. Reactive oxygen species in immune responses. Free Radical Biology and Medicine 36(12):1479-1480, 2004 https://doi.org/10.1016/j.freeradbiomed.2004.03.022
  6. Vergani, L., Floreani, M., Russell, A., Ceccon, M., Napoli, E., Cabrelle, A., Valente, L., Bragantini, F., Leger, B., Dabbeni-Sala, F. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines. European Journal of Biochemistry 271(18):3646-3656, 2004 https://doi.org/10.1111/j.1432-1033.2004.04298.x
  7. Mittal, A., Pathania, V., Agrawala, P.K., Prasad, J., Singh, S., Goel, H.C. Influence of Podophyllum hexandrum on endogenous antioxidant defence system in mice: possible role in radioprotection. Journal of Ethnopharmacology 76(3):253-262, 2001 https://doi.org/10.1016/S0378-8741(01)00243-4
  8. Fridovich, I. Superoxide dismutases. The Journal of Biological Chemistry 264(14):7761-7764, 1989
  9. Bai, J., Rodriquez, A.M., Melendez, J.A., Cederbaum, A.I. Over expression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. The Journal of Biological Chemistry 274(37):26217-26224, 1999 https://doi.org/10.1074/jbc.274.37.26217
  10. Tome, M.E., Baker, A.F., Powis, G., Payne, C.M., Briehl, M.M. Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Research 61(6):2766-2773, 2001
  11. Meister, A. Glutathione-ascorbic acid antioxidant system in animals. The Journal of Biological Chemistry 269(13):9397-9400, 1994
  12. Ottino, P., Duncan, J.R. Effect of alpha-tocopherol succinate on free radical and lipid peroxidation levels in BL6 melanoma cells. Free radical Biology and Medicine 22(7):1145-1151, 1997 https://doi.org/10.1016/S0891-5849(96)00529-1
  13. 허준 편. 동의보감편찬위원회 역. 동의보감. 서울, 학력개발사, p 378, 1988
  14. 김창민, 신민교, 안덕균, 이경순. 중약대사전. 서울, 정담, pp 33-40, 1998
  15. 조수열, 장주연, 김명주. 갈화와 갈근 열수추출물이 에탄올 투여 흰쥐의 혈청성분에 미치는 영향. 한국식품영양과학회지 30(1):92-96, 2001
  16. 부일권, 김연섭. 갈근이 뇌허혈 손상 흰쥐의 해마신경세포 손상에 미치는 영향. 대한본초학회지 19(1):77-82, 2004
  17. 이옥희. 갈근 에탄올 추출물이 흰쥐의 항산화계에 미치는 영향. 한국영양학회지 37(10):872-880, 2004
  18. 이정숙, 이경희, 정재홍. 갈근추출물이 고지방식이를 섭취한 흰쥐의 지질대사에 미치는 영향. 한국식품영양과학회지 28(1):218-224, 1999
  19. 이정숙, 김은실, 김석환. 갈근추출물이 에탄올을 투여한 흰쥐의 지질과산화에 미치는 영향. 한국식품영양과학회지 28(4):901-906, 1999
  20. 한성희. 갈근 추출물이 납을 투여한 흰쥐의 혈청 효소활성도 및 조직의 납 축적에 미치는 영향. 한국식품과학회지 32(4):914-919, 2000
  21. 정영희, 한성희, 신미경. 카드뮴을 급여한 흰쥐에서 갈근 열수 추출액의 해독작용효과. 한국식생활문화학회지 17(4):456-464, 2002
  22. Kalinec, G.M., Webster, P., Lim, D.J., Kalinec, F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiology Neurootology 8(4):177-189, 2003 https://doi.org/10.1159/000071059
  23. Hansen, M.B., Nielsen, S.E., Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods 119(2):203-210, 1989 https://doi.org/10.1016/0022-1759(89)90397-9
  24. Watson, J.M., Parrish, E.A., Rinehart, C.A. Selective potentiation of gynecologic cancer cell growth in vitro by electromagnetic fields. Gynecologic Oncology 71(1):64-71, 1998 https://doi.org/10.1006/gyno.1998.5114
  25. Tan, A.S., Berridge, M.V. Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. Journal of Immunological Methods 238(1-2):59-68, 2000 https://doi.org/10.1016/S0022-1759(00)00156-3
  26. Carrillo, M.C., Kanai, S., Nokubo, M., Kitani, K. (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sciences 48(6):517-521, 1991 https://doi.org/10.1016/0024-3205(91)90466-O
  27. Flohe, L., Gunzler, W.A. Assays of glutathione peroxidase. Methods in enzymology 105: 114-121, 1984 https://doi.org/10.1016/S0076-6879(84)05015-1
  28. arlberg, I., Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry 250(14):5475-5480, 1975
  29. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. The Journal of Biological Chemistry 193(1):265-275, 1951
  30. 정세영. 천연성분을 이용한 cis-platin 신장독성 억제물질 개발: 전통약물로부터 신약개발. 서울, 경희대학교 경희공서약학연구소, pp 71-79, 1994
  31. Hinojosa, R., Riggs, L.C., Strauss, M., Matz, G.J. Temporal bone histopathology of cisplatin ototoxicity. The American Journal of Otology 16(6):731-740, 1995
  32. Lopez-Gonzalez, M.A., Guerrero, J.M., Rojas, F., Delgado, F. Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. Journal of Pineal Research 28(2):73-80, 2000 https://doi.org/10.1034/j.1600-079X.2001.280202.x
  33. Ford, M.S., Nie, Z., Whitworth, C., Rybak, L.P., Ramkumar, V. Up-regulation of adenosine receptors in the cochlea by cisplatin. Hearing Research 111(1-2):143-152, 1997 https://doi.org/10.1016/S0378-5955(97)00103-2