• Title/Summary/Keyword: Glutathione conjugation

Search Result 45, Processing Time 0.023 seconds

PULMONARY XENOBIOTIC CONJUGATION IN THE ISOLATED PURFUSED RABBIT LUNG AND IN VITRO: EFFECT OF ETHANOL

  • Yang, C.Mierha;Carlson, Gary P.
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.191-208
    • /
    • 1991
  • Pulmonary conjugation pathways may be important for the metabolism of xenobiotics introduced via airways of systemically. The objective of this study was to determine the pulmonary conjugating capacity in both the isolated perfused rabbit lung (IPRL) and in vitro, and the ability of ethanol to alter the above. The IPRL was capable of conjugating glutathione (GSH) with either 1-chloro-2,4-dinitrobenzene (CDNB) of 1,2-epoxy-(p-nitrophenoxy) propane(ENP). The pulmonary GSH conjugation with ENP was inhibited by cibacron blue, indicating the presence of glutathione-S-transferase (GST) u and/or classes, but it was not altered by buthionine sulfoximine, a selective inhibitor of Gamma-glutamylcysteine synthetase.

  • PDF

Chlorothalonil- Biotransformation by Glutathione S- Transferase of Escherichia coli

  • Kim, Young-Mog;Park, Kunbawui;Jung, Soon-Hyun;Park, Jun-Ho;Kim, Won-Chan;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • It has recently been reported that one of the most important factors of yeast resistance to the fungicide chlorothalonil is the glutathione contents and the catalytic efficiency of glutathione S-transferase (GST) (Shin et al., 2003). GST is known to catalyze the conjugation of glutathione to a wide variety of xenobiotics, resulting in detoxification. In an attempt to elucidate the relation between chlorothalonil-detoxification and GST, the GST of Escherichia coli was expressed and purified. The drug-hypersensitive E. coli KAM3 cells harboring a plasmid for the overexpression of the GST gene can grow in the presence of chlorothalonil. The purified GST showed chlorothalonil-biotransformation activity in the presence of glutathione. Thus, chlorothalonil is detoxified by the mechanism of glutathione conjugation catalyzed by GST.

Studies on the Selectivity of Herbicide Alachlor;I. Phytotoxicity and Glutathione Conjugation (제초제 Alachlor의 선택성에 관한 연구;I. 약해와 글루타치온 Conjugation 반응)

  • Park, Chang-Kyu;Hwang, Eul-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 1987
  • Present work has been initiated to see if inherent biochemical difference among plants is, in any way, related to the observed selectivity characteristics of preemergence herbicide, alachlor. Application of aqueous solution of alachlor onto three intact plants, soybean, chinese cabbage and barnyard grass resulted in phytotoxicity responses in the testt plants in varying degree. Examination of glutathione (and homoglutathione) contents of the test plants indicated that the phytotoxicity is inversely proportional to the peptide contents of the test plants. It was also noted that four to five water soluble metabolites are readily formed in intact seedling treated with labelled alachlor and glutathionealachlor and homoglutathionealachlor conjugates were tentatatively identified as major metabolites. It is concluded that conjugation reaction involving glutathiones and xenobiotic alachlor, a typical phase II reaction, acts as detoxification reaction in the three test plants and this would, in turn, contribute to observed selectivity of alachlor.

  • PDF

Studies on the Selectivity of the Herbicide Alachlor;II. A Metabolic Approach to Selectivity (제초제 Alachlor 의 선택성에 관한 연구;II. 대사론적 접근)

  • Hwang, Eul-Chul;Park, Chang-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.209-215
    • /
    • 1994
  • Absorption, translocation, and metabolism of the herbicide alachlor in soybean, Chinese cabbage, and barnyard grass seedlings were examined and compared with each other using [phenyl-U-$^{14}C$] alachlor in search of a primary factor contributing to the selectivity of alachlor. When root of each seedling was immersed into the solution containing [$^{14}C$]alachlor, the amount of absorbed radioactivity/mg dry matter of seedling which was suggested to be correlated with the susceptibility of plants to alachlor decreased in the order of soybean ${\gg}$ Chinese cabbage ${\geq}$ barnyard grass and the rate of translocation to shoot was Chinese cabbage ${\geq}$ barnyard grass ${\gg}$ soybean. These orders did not consistently explain the selective phytotoxicity of alachlor. Analyses of extracts by reverse phase chromatography showed that alachlor was detoxified by conjugation with glutathione in all three plants and the rate of glutathione conjugation of soybean, the resistant species to alachlor, was the greatest, while that of barnyard grass, the susceptible, was the lowest among three plants. This result explained well the selective phytotoxicity of alachlor. Both absorption and translocation contribute undoubtedly to the selectivity by influencing the active internal concentration of alachlor. However, neither of them appeared to be a primary factor. It was concluded that the most important primary factor was the rate of glutathione conjugation, which detoxifies alachlor and plays an important role in selectivity.

  • PDF

Changes in drug metabolism during hypoxia/reoxygenation in isolated perfused rat

  • Seo, Min-Young;Cho, Tai-Soon;Lee, Sun-Mee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.98-98
    • /
    • 1997
  • This study was done to investigate the effect of vitamin E on hypoxia/reoxygenation-induced hepatic injury in isolated perfused rat liver. Rats were pretreated with vitamin E or vehicle(soybean oil). Isolated livers from fasted 18 hours were subjected to 45min of low flow hypoxia or N$_2$ hypoxia followed by reoxygenation for 30min. The perfusion medium used was KHBB(pH 7.4) and 50${\mu}$㏖/$\ell$ of ethoxycoumarin was added to the perfusate to determine the ability of hepatic drug-metabolizing systems, In low flow hypoxia model, total glutathione and oxidised glutathione levels were significantly increased by hepoxia/reoxygenation with slight increase in LDH levels. These increases were prevented by vitamin E pretreatment. In N$_2$ hypoxia model, LDH, total glutathione and oxidized glutathione levels were increased significantly by hypoxia but restored to normal level by reoxygenation. Vitamin E had little effect on this hypoxic damage. There were no significant changes in the rate of hepatic oxidation of 7-EC to 7-HC in both hepoxic models. But, the subsequent conjugation of 7-HC by sulfate or glucuronic acid were significantly decreased by hypoxia, but restored by reoxygenation in both hypoxia models. As opposed to our expectation, treatment with vitamin E aggrevated the decrease of the rate of conjugation and even inhibited the restoration by reoxygenation. Our findings suggest that hypoxia/reoxygenation diminishes phase II drug metabolizing function and this is, in part, related to decreased energy level.

  • PDF

Hepatotoxic Effect of 1-Bromopropane and Its Conjugation with Glutathione in Male ICR Mice

  • Lee Sang Kyu;Jo Sang Wook;Jeon Tae Won;Jun In Hye;Jin Chun Hua;Kim Ghee Hwan;Lee Dong Ju;Kim Tae-Oh;Lee Eung-Seok;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1177-1182
    • /
    • 2005
  • The hepatotoxic effects of 1-bromopropane (1-BP) and its conjugation with glutathione were investigated in male ICR mice. A single dose (1000 mg/kg, po) of 1-BP in corn oil to mice significantly increased serum activities of alanine aminotransferase and aspartate aminotransferase. Glutathione (GSH) content was dose-dependently reduced in liver homogenates 12 h after 1-BP treatment. In addition, 1-BP treatment dose-dependently increased levels of S-pro-pyl GSH conjugate at 12 h after treatment, as measured by liquid chromatography-electro-spray ionization tandem mass spectrometry. The GSH conjugate was maximally increased in liver at 6 h after 1-BP treatment (1000 mg/kg), with a parallel depletion of hepatic GSH content. Finally, 1-BP induced the production of malondialdehyde in liver. The present results suggest that 1-BP might cause hepatotoxicity, including lipid peroxidation via the depletion of GSH, due to the formation of GSH conjugates in male ICR mice.

Functional analysis of Tyr7 residue in human glutathione S-transferase P1-1 (Human glutathione S-transferase 중 tyrosine 7 잔기의 기능 분석)

  • Kong, Kwang-Hoon;Park, Hee-Joong;Yoon, Suck-Young;Cho, Sung-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.378-385
    • /
    • 1997
  • In order to clarify the functional role of Tyr7 in human glutathione S-transferase P1-1, we extensively investigated the effect of mutation of Tyr7 on the substrate specificity and inhibition characteristics. The mutational replacement of Tyr7 with phenylalanine lowered the specific activities with 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy) propane for GSH-conjugation reaction to 3~5% of the values for the wild-type enzyme. The pKa of the thiol group of GSH bound in Y7F was about 2.4 pK units higher than that in the wild-type enzyme. The $I_{50}$ of hematin for Y7F was similar to that for the wild-type enzyme and those of benastatin A and S-(2,4-dinitrophenyl)glutathione were only moderately decreased. These results suggest that Tyr7 is considered to be important the catalytic activities not only for GSH-chloronitrobenzene derivatives but also for GSH-epoxide conjugation reaction, rather than to binding of the substrates.

  • PDF

Tolerance Mechanism to Simazine in Coix lacryma-jobi (율무(Coix lacryma-jobi)의 제초제 Simazine에 대한 내성기구)

  • Ma, Sang-Yong;Kim, Jong-Seok;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • Tolerance mechanism to simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) in Coix lacryma-jobi was investigated with respect to herbicide detoxification via glutathione conjugation. Simazine was initially absorbed by seedlings of C. lacryma-jobi and corn, but after 12 hours of treatment, no significant difference in simazine absorption was found in both species. Simazine absorbed was rapidly metabolized to glutathione-simazine conjugate. One to six hours after treatment, metabolism was approximately 2-fold faster in C. lacryma-jobi than in corn. Glutathione content was found 1.5- and 2.3-fold higher in coleoptile and root of C. lacryma-jobi, respectively, compared with corn. In both species, the highest concentration of glutathione was found in coleoptile tissue. Glutathione S-transferase that exhibits activity with 1-chloro-2,4-dinitrobenzene was not significantly different between two species. However, glutathione S-transferase activity with simazine was approximately 2-fold greater in C. lacryma-jobi than in corn. The glutathione S-transferase activity was 20 to 30% greater in shoot of either species than in root. Fast protein liquid chromatography-anion exchange column was used to separate glutathione S-transferase isozymes in coleoptiles of C. lacryma-jobi and corn. A peak of glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and two peaks of glutathione S-transferase activity with simazine from C. lacryma-jobi were coeluted with those from corn, but showed greater activity than in the case of corn. Another glutathione S-transferase isozyme that exhibits activity with simazine was detected in the elution of C. lacryma-jobi extract, but not in corn. Electron transport in chloroplast thylakoids isolated from leaves of both species was equally sensitive to simazine applied at 1 to 100 nM. These results indicate that the simazine tolerance in C. lacryma-jobi is due to its capacity to detoxify the herbicide via glutathione conjugation, which is positively correlated with the level of glutathione content and glutathione S-transferase activity.

  • PDF

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Role of Glutathione Conjugation in 1-Bromobutane-induced Immunotoxicity in Mice

  • Lee, Sang-Kyu;Lee, Dong-Ju;Jeon, Tae-Won;Ko, Gyu-Sub;Yoo, Se-Hyun;Ha, Hyun-Woo;Kang, Mi-Jeong;Kang, Won-Ku;Kim, Sang-Kyum;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses or extraction solvents in workplace. In the present study, immunotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose response or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 hr for time course. S-Butyl GSH was identified in spleen by liquid chromatography-electrospray ionization tandem mass spectrometry. Splenic GSH levels were significantly reduced by single treatment with 1-BB. S-Butyl GSH conjugates were detected in spleen from 6 hr after treatment. Oral 1-BB significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular interlukin-2 in response to Con A. Our present results suggest that 1-BB could cause immunotoxicity as well as reduction of splenic GSH content, due to the formation of GSH conjugates in mice. The present results would be useful to understand molecular toxic mechanism of low molecular weight haloalkanes and to develop biological markers for exposure to haloalkanes.