• Title/Summary/Keyword: Glucose conversion rate

Search Result 89, Processing Time 0.073 seconds

Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production (바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.470-474
    • /
    • 2011
  • Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of $60^{\circ}C$. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at $50^{\circ}C$. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from $40^{\circ}C$. The yield of that time was 33.05% from 48 hour.

An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion (빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교)

  • Lim, Su-Bin;Jeong, Ji-Won;Yeon, Jae-Sung;Lee, Na-Kyung;Won, Jong-In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.468-471
    • /
    • 2015
  • Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment (Organosolv 전처리를 통한 리기다소나무의 바이오에탄올 생산 적용성 평가)

  • Youe, Won-Jae;Kim, Yong Sik;Kang, Kyu-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the feasibility of utilizing wood chips from pitch pine (Pinus rigida) was evaluated for bioethanol production by an organosolv pretreatment and enzymatic saccharification. When wood chips from pitch wood were pretreated with 75% (v/v) ethanol and 1.7% sulfuric acid as a catalyst at H-factor 2000, average pulp yield was 43.3%, which pretreated wood fibers showed higher glucan (55.8%) and lower lignin (12.2%) contents than untreated control (43.9% glucan and 27.8% lignin). After enzymatic saccharification, the organosolv pulps with 56.2% delignification rate reached above 97% conversion rate of cellulose to glucose. These results indicated that increasing the delignification rate causes micro pores on the surface of organosolv pulps resulting in improved the accessibility of enzyme onto the substrate. Moreover, it was in agreement with the SEM examination of wood fibers.

Production of Beijerinckia indica HS-2001 in Fed-batch and continuous culture.

  • Yang, Jae-Gyun;Seo, Hyeong-Pil;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.245-248
    • /
    • 2003
  • As a result of broth substitutions when each culture-mediums were difference, whole culture-medium was found to be best feeding solution for production of PS-7 by B. indica. Maximal production of PS-7 was 1$10.0\;g/{\ell}$ and its conversion rate from 2% (w/v) glucose to PS-7 was 50%. After 48 hr, 50%(v/v) medium of working volume began to substitute in 7L jar fermenter. Production of PS-7 increased after 48hr, recovered productivity of PS-7. Following this preliminary culture, the resultant culture was subjected to continuous flow conditions controlled that the dilution rate were $0.01\;{\sim}\;0.04\;h^{-1}$. Production of PS-7 increased at dilution rate $0.0100\;h^{-1}$ whereas productivity of PS-7 decreased gradually in dilution rate $0.0200\;{\sim}\;0.0400\;h^{-1}$. Maximal production of PS-7 was $10.0\;g/{\ell}$ in continuous culture.

  • PDF

Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

  • Im, Kyung Hoan;Nguyen, Trung Kien;Choi, Jaehyuk;Lee, Tae Soo
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

Chlorella vulgaris의 이산화탄소 고정 및 수소생성 특성

  • Kim, Cheol-Gyeong;Park, Gi-Yong;Park, Jun-Seong;Kim, Nam-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.69-72
    • /
    • 2000
  • After 300hours cultivation Chlorella vulgaris in standard medium in which the initial cell seeding concentration of $0.7{\times}10^4ells/mL$, $1.21{\times}10^5ells/mL$ was gained but in the case of 0.30g/L of initial cell seeding concentration the maximum growth rate of $0.162g/L\;{\cdot}\;day$ was shown. In the case of the initial glucose concentration of 2.00g/L, the cell concentration was changed from initial 0.025g cells/L to 0.874g cells/L after 140hours cultivation, the specific growth rate was $0.243h^{-1}$, but 268mL of gases were formed in 72hours, and after that, hydrogen evolution was completed. Formed gases were not all hydrogen, and 19.87 mol% of hydrogen is detected by GC. Analyzing the composition of Chlorella vulgaris by elementary analysis, it is found to be $C_{1.000}\;H_{1.774}\;N_{0.125}\;O_{0.557}$, and $CO_2$ conversion rate by Chlorella vulgaris was $0.616\;cells/g\;{\cdot}\;CO_2$

  • PDF

Optimization of Cell Concentration and Dilution Rate in Cell Recycled Ethanol Fermentation (세포재순환 에탄올 발효에서 세포농도와 희석률의 최적화)

  • 이재우;유영제
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.258-264
    • /
    • 1992
  • The rheological characteristics of the ethanol fermentation broth were pseudoplastic when the yeast concentration was above 150g/L. From the viewpoint of rheological properties, the cell concentration below 150g/L was recommended for ethanol fermentation. Since the cell floc was formed at the cell concentration of 100 g/L, yeast cells were not much plugged in the pores of the membrane. The cell concentration above 100g/L was desirable when considering the permeability of the membrane. Since ethanol productivity was the highest when the cell concentration was 130 g/L in cell recycled ethanol fermentation. The optimal dilution rate was determined at 1.3 h-1 at constant cell mass of 130g/L. At this dilution rate, the ethanol productivity and glucose conversion ratio ware 80 g/L$\cdot$h and 0.94, respectively.

  • PDF

Effect of nitrogen sources on production of exopolymer by Pseudomonas elodea ATCC 31461

  • Lee, Nam-Gyu;Kim, Hyeon-Suk;Seo, Hyeong-Pil;Jeong, Dae-Yeong;Kim, Ji-Mo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.247-250
    • /
    • 2000
  • Extracellular polysaccharide was produced by Pseudomonas elodea ATCC 31461 under aerobic condition. Nitrogen sources in medium affected cell growth and production of exopolymer. Ammonium nitrate limitation was found to be essential for higher production of exopolymer. Conversion rate of exopolymer from glucose under ammonium nitrate limitation was about 5 times higher than with ammonium nitrate.

  • PDF

Production of ${\gamma}-Aminobutyric$ Acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and its Neuroprotective Effect on Neuronal Cells

  • Cho, Yu-Ran;Chang, Ji-Yoon;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • Lactic acid bacteria that accumulated ${\gamma}-aminobutyric$ acid (GABA) in culture medium were screened to identify strains with high GAB A-producing ability. One strain, MS, which was isolated from kimchi, showed the highest GABA-producing ability among the screened strains. MS was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination, Optimum culture conditions for GABA production were determined: MRS broth containing 5% MSG, 1% NaCl, and 1% glucose, at an initial pH of 5.0, the incubation temperature at $30^{\circ}C$ for 36 h. Under these conditions, MS produced GABA at a concentration of 251 mM with a 94% GABA conversion rate. Moreover, culture extracts of Lb. buchneri MS partially or completely protected neuronal cells against neurotoxicantinduced cell death.