DOI QR코드

DOI QR Code

Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment

Organosolv 전처리를 통한 리기다소나무의 바이오에탄올 생산 적용성 평가

  • Youe, Won-Jae (Dept. of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University) ;
  • Kim, Yong Sik (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Kang, Kyu-Young (Dept. of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University)
  • 유원재 (동국대학교 바이오시스템대학 바이오환경과학과) ;
  • 김용식 (국립산림과학원 화학미생물과) ;
  • 강규영 (동국대학교 바이오시스템대학 바이오환경과학과)
  • Received : 2015.07.10
  • Accepted : 2015.08.21
  • Published : 2015.08.30

Abstract

In this study, the feasibility of utilizing wood chips from pitch pine (Pinus rigida) was evaluated for bioethanol production by an organosolv pretreatment and enzymatic saccharification. When wood chips from pitch wood were pretreated with 75% (v/v) ethanol and 1.7% sulfuric acid as a catalyst at H-factor 2000, average pulp yield was 43.3%, which pretreated wood fibers showed higher glucan (55.8%) and lower lignin (12.2%) contents than untreated control (43.9% glucan and 27.8% lignin). After enzymatic saccharification, the organosolv pulps with 56.2% delignification rate reached above 97% conversion rate of cellulose to glucose. These results indicated that increasing the delignification rate causes micro pores on the surface of organosolv pulps resulting in improved the accessibility of enzyme onto the substrate. Moreover, it was in agreement with the SEM examination of wood fibers.

Keywords

References

  1. Wyman, C. E., Biomass ethanol: Technical progress, opportunities, and commercial challenges, Annual Review of Energy the Environment 24:189-226 (1999). https://doi.org/10.1146/annurev.energy.24.1.189
  2. Scott, C. D., Davison, B. H., Scott, T. C., Woodward, J., Dees, C., and Rothrock, D. S., An advanced bioprocessing concept for the conversion of waste paper to ethanol, Applied Biochemistry and Biotechnology 45(1):641-653 (1994). https://doi.org/10.1007/BF02941836
  3. Kwon, J. K., Moon, H. S., Seung, J. S., Kim, W., and Hong, S. I., Fed-batch simultaneous saccharification and fermentation of waste paper to ethanol, Korean Journal of Biotechnology and Bioengineering 14(1):24-30 (1999).
  4. Kim, H. J. and Bae, H. J., Bioethanol production from popping pretreated switchgrass, Journal of the Korean Wood Science and Technology 40(3):147-155 (2012). https://doi.org/10.5658/WOOD.2012.40.3.147
  5. Yang, B. and Wyman, C. E., Pretreatment: The key to unlocking low-cost cellulosic ethanol, Biofuels Bioproducts and Biorefining 2(1):26-40 (2008). https://doi.org/10.1002/bbb.49
  6. Gharpuray, M. M., Lee, Y. H., and Fan, L. T., Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis, Biotechnology and Bioengineering 25(1):157-172 (1983). https://doi.org/10.1002/bit.260250113
  7. Morrison, I. M., Influence of chemical and biological pretreatments on the degradation of lignocellulosic material by biological systems, Journal of the Science of Food and Agriculture 42(4):295-304 (1988). https://doi.org/10.1002/jsfa.2740420403
  8. Tanaka, M., Matsuno, R., and Converse, A. O., N-butylamine and acid-steam explosion pretreatments of rice straw and hardwood: Effects on substrate structure and enzymatic hydrolysis, Enzymatic and Microbial Technology 12(3):190-195 (1990). https://doi.org/10.1016/0141-0229(90)90037-Q
  9. Lynd, L. R., Elamder, R. T., and Wyman, C. E., Likely features and costs of mature biomass ethanol technology, Applied Biochemistry and Biotechnology 57(1):741-761 (1996). https://doi.org/10.1007/BF02941755
  10. Pan, X., Gilkes, N., Kadla, J. F., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., and Saddler, J. N., Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields, Biotechnology and Bioengineering 94(5):851-861 (2006). https://doi.org/10.1002/bit.20905
  11. Zhao, X., Cheng, K., and Liu, D., Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Applied Microbiology and Biotechnology 82(5):815-827 (2009). https://doi.org/10.1007/s00253-009-1883-1
  12. Zhu, J. Y. and Pan, X. J., Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation, Bioresource Technology 101(13):4992-5002 (2010). https://doi.org/10.1016/j.biortech.2009.11.007
  13. Ferraz, A., Mendonca, R., and da Silva, F. T., Organosolv delignification of white- and brown-rotted Eucalyptus grandis hardwood, Journal of Chemical Technology and Biotechnology 75(1):18-24 (2000). https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<18::AID-JCTB169>3.0.CO;2-Z
  14. Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., and Saddler, J. N., Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity, Journal of Agricultural and Food Chemistry 54(16):5806-5813 (2006). https://doi.org/10.1021/jf0605392
  15. Pan, X., Xie, D., Kang, K. Y., Yoon, S. L., and Saddler, J. N., Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates, Applied Biochemistry and Biotechnology 136-140:367-378 (2007).
  16. Koo, B. W., Gwak, K. S., Kim, H. Y., Choi, J. W., Yeo, H. M., and Choi, I. G., Investigation of the effective catalyst for organosolv pretreatment of Liriodendron tulipifera, Journal of the Korean Wood Science and Technology 38(2):149-158 (2010). https://doi.org/10.5658/WOOD.2010.38.2.149
  17. Garcia, A., Egues, I., Toledano, A., Gonzalez, M., Serrano, L., and Labidi, J., Biorefining of lignocellulosic residues using ethanol organosolv process, Chemical Engineering Transactions 18:911-916 (2009).
  18. Kim, Y. R., Yu, A. N., Chung, B. W., Han, M. H., and Choi, G. W., Lignin removal from barley straw by ethanosolv pretreatment, KSBB Journal 24(6):527-532 (2009).
  19. Brosse, N., Hage, R. E., Sannigarahi, P., and Ragauskas, A., Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus x Giganteus, Cellulose Chemistry and Technology 44(1-3):71-78 (2010).
  20. Parajo, J. C., Alonso, J. L., and Santos, V., Kinetics of catalyzed organosolv processing of pine wood, Industrial & Engineering Chemistry Research 34(12):4333-4342 (1995). https://doi.org/10.1021/ie00039a025
  21. Usmani, T. H., Tahir, M., Ahmed, M. A., and Alvi, S. K., Catalyzed organosolv delignification of an indigenous wood-partal (Picea morinda), Journal of the Chemical Society of Pakistan 23(4):210-214 (2001).
  22. Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., and Saddler, J. N., Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process for manufactures of fuel-grade ethanol and co-products, Biotechnology and Bioengineering 90(4):473-481 (2005). https://doi.org/10.1002/bit.20453
  23. Park, N. H., Kim, H. Y., Koo, H. K., Yeo, H. M., and Choi, I. G., Organosolv pretreatement with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida), Bioresource Technology 101(18):7046-7053 (2010). https://doi.org/10.1016/j.biortech.2010.04.020
  24. Rowell, R. M., Pettersen, R., and Tshabalala. M. A., Cell wall chemistry, In Handbook of Wood Chemistry and Wood Composites, Rowell R. M. (ed.), CRC Press, Boca Raton, FL, USA, pp. 64-65 (2013).
  25. Pan, G. X., Bolton, J. L., and Leary, G. J., Determination of ferulic and p-coumaric acids in wheat straw and the amounts released by mild acid and alkaline peroxide treatment, Journal of Agricultural and Food Chemistry 46(12):5283-5288 (1998). https://doi.org/10.1021/jf980608f
  26. Lundquist, K., Simonson, R., and Tingsvik, K., Lignin carbohydrate linkages in milled wood lignin preparations from spruce wood, Svensk Papperstidning 86(6):44-47 (1982).

Cited by

  1. Influence of inorganic salts on biomass production, biochemical composition, and bioethanol production of Populus alba vol.13, pp.6, 2020, https://doi.org/10.3832/ifor3438-013