• Title/Summary/Keyword: Glucose biosensor

Search Result 69, Processing Time 0.021 seconds

Refractometric Glucose Biosensor Incorporating a Vertically Coupled Microring Resonator in Polymeric Waveguides (수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서)

  • Kim, Gun-Duk;Son, Keun-Sik;Lee, Hak-Soon;Kim, Ki-Do;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • A refractometric glucose biosensor incorporating a vertically coupled microring resonator in polymers was proposed and realized. The ring was covered with a target analyte of glucose solution with a certain concentration, so that its effective refractive index could be altered and, as a result, the resonance wavelength of the sensor was shifted. Therefore the concentration of the glucose solution can be estimated by observing the shift in the resonance wavelength. Two schemes were exploited for enhancing the sensitivity of the sensor. First, the effective refractive index of the polymeric waveguide used for the resonator sensor was adjusted to approach that of the target analyte as best as possible. Second, the ring waveguide, which serves as a crucial sensing part, was appropriately over-etched to enlarge its contact area with the analyte. The proposed resonator sensor was designed with the beam propagation method. The refractive indices of the core and cladding polymer involved were 1.430 and 1.375 respectively, leading to the waveguide's effective refractive index of ${\sim}1.390$, which is faiirly close to that of the glucose solution of ${\sim}1.333$. The prepared ring resonator with the $400-{\mu}m$ radius exhibited the free spectral range of 0.66 nm, the bandwidth of 0.15 nm, and the quality factor of 10,000. For the sensor operating at 1,550 nm wavelength, the achieved sensitivity was as great as 0.28 pm/(mg/dL), which is equivalent to 200 nm/RIU.

Preparation of the Citrobacter freundii Bio-Sensor for the Determination of Glucose and Its Applications (Glucose 정량을 위한 Citrobacter freundii Bio-Sensor의 개발과 그 응용)

  • Ihn Gwon-Shik;Hong Young-Seuk;Kim Ui-Rak;Jang Seh-Yong;Sohn Moo-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 1990
  • A bio-sensor for the determination of glucose has been constructed by immobilizing the Citrobacter freundii or its organelle on carbon dioxide gas-sensor. The bacterial sensor was better than organelle in response, but the latter showed a shorter response time. The bacterial sensor gave linearity between 7.0 ${\times}\;10^{-4}$ and 1.0 ${\times}\;10^{-2}$ M glucose with a slope of 42.2 mV/decade in pH 7.0, 0.2 M tris-HCl buffer at 30$^{\circ}C$. The selectivity of this sensor was very high for glucose. Employing for the determination of glucose in serum, the sensor showed a good agreement with a routine analyzer.

  • PDF

On-line Monitoring of a Glucose Concentration on a Fermentation Process of Wine for an Automatic Control of a Fermentation Process (발효공정 자동제어를 위한 포도주 발효 중 포도당 농도 온라인 측정)

  • Song, Dae-Bin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.276-281
    • /
    • 2008
  • A flow injection analysis method (FIA), which analyzes sample conditions after injecting a sample and reagents into a continuous stream, are recognized as the most adequate analyzing method according to the increase of sampling frequency, the decrease of measuring time and the diversity of measuring targets. Specially, the FIA is considered to be used effectively for the control of a fermentation process to produce fermentation food and useful microbial production by activation of a fermentation industry for development of biological materials. In this study, a flow injection analysis sensor unit was developed for on-line monitoring of the fermentation process. The performance was verified by on-line measuring the concentration of glucose of the fermentation process of wine. The glucose concentrations of the samples were measured every 12 hours during the whole fermentation process and compared with those by a HPLC. The concentration relative errors of glucose on the fermentation process of wine showed below 30% within 72 hours and over 50% after the 72 hours. The sensor unit had potential to on-line monitoring of the fermentation process but some problems to overcome for an commercial application.

Surface Plasmon Resonance (바이오센서로서 표면 플라즈몬 공명)

  • 구수진
    • BT NEWS
    • /
    • v.11 no.2
    • /
    • pp.24-34
    • /
    • 2004
  • 센서란 측정 대상물로부터 정보를 검지 또는 측정하여 그 측정량을 인식 가능한 유용한 신호로 변화하는 장치(device)로 정의할 수 있으며, 바이오센서(biosensor)는 생물학적 요소와분석 대상 물질과의 반응에서 나타나는 전기화학적 변화, 열에너지의 변화, 형광 또는 색의 변화 등을 인식 가능한 신호로 변환시켜 주는 장치와 결합하여 제작한 기구를 지칭한다. 바이오센서의 효시는 1962년 포도당을 측정하기 위해 Clark이 dialysis membrane을 이용하여 최초의 Glucose센서를 개발한 이래로 생물공학, 화학공학, 전자공학, 생명공학 및 컴퓨터 공학 등 여러 분야가 접목되면서 급속도로 연구 개발되어 왔다.(중략)

  • PDF

Development of Three-dimensional Chamber-type Glucose Sensor Using Micromachining Technology (마이크로머시닝 기술을 이용한 3차원 마이크로 챔버형 글루코스 센서의 개발)

  • Kim Sung Ho;Kim Chang Kyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • A micromachined biochip with a three dimensional silicon chamber was developed for the construction of biosensors. Anisotropic etching was used fur the formation of the chamber on the p-type silicon wafer(100) and then was glued to the Pyrex glass bottom-substrate with pre-deposited platinum electrode. The electrochemical characterization of its Pt electrode and Ag/AgCl reference electrode was investigated.

  • PDF

Development of Enzyme Immobilization Method to Remove Interference by Physiological Chemicals for Implantable Glucose Sensors (이식형 혈당 센서의 생리활성 물질에 의한 방해 효과를 제거하기 위한 새로운 효소고정법 개발)

  • Chung, T.D.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.72-73
    • /
    • 1998
  • A new method for enzyme immobilization has been developed to remove interference by potential interferents in body fluids. Instead of using electron mediators, we chose direct hydrogen peroxide measurement route. Extremely hydrogen peroxide-selective polymer was coated as an inner membrane to exclude interferents and then glucose oxidase(GOx) was entrapped by electropolymerization of inert monomers. There was no solvent casting step throughout the whole fabrication procedure but all membranes on Pt-Ir electrode were formed by electropolymerization. Thus, membrane thickness, quantity of enzyme loaded and can be controlled by electrochemical parameters. As a result, reproducibility of biosensor characteristics becomes remarkably improved in terms of mass production.

  • PDF

Biosensors (바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.423-427
    • /
    • 2000
  • Intense research on biosensors has been performed in a number of different institution over the past 15 years, but relatively few commercial products have resultingly, the blood glucose sensor is a good example of a product which penetrated the market. However recently, the development of electrochemical and optical technologies has accelerated the turnover of the research as is illustrated by a rapid increase in the number of point-of-care diagnostic systems and analytical devices. Examples of such biosensors used in the fields of medical diagnostics, bioprocess control, and environmental monitoring are described, and summarized in an introduction to their characteristics, structures, and functions, given.

  • PDF

Photonic Glucose Sensor Using a Vertically Coupled Polymeric Microdisk Resonator (수직 결합형 폴리머 마이크로디스크 공진기를 이용한 광학적 글루코스 센서)

  • Kim, Gun-Duk;Son, Geun-Sik;Lee, Hak-Soon;Kim, K-Do;Lee, Sang-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1412-1415
    • /
    • 2008
  • A glucose biosensor using a microdisk resonator in polymeric waveguides was developed by observing either the shift in the resonant wavelength or the variation in the optical power. The deformation in the transfer curve of the vertically coupled resonator sensor resulting from the variation in the disk-to-ring coupling, which was incurred by the application of the target analyze, was suppressed. And the refractive index of the polymeric waveguide was devised to closely follow that of the analyze itself for enhancing the sensitivity of the sensor. The sensitivity and measurement range were observed to be respectively 0.14 pm/(mg/dL) and 1500 mg/dL (theoretically up to 4700 mg/dL, for the wavelength shift method and 0.04 dB/(mg/dU and 140 mg/dL the power variation scheme.

Development of electrochemical biosensor for determination of galactose (4갈락토오즈 측정을 위한 전기화학적 바이오센서 개발)

  • Park, Kap Soo;Cho, Soon Sam;Quan, De;Lee, Jae Seon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.393-399
    • /
    • 2007
  • In principle, the blood galactose level may be determined conveniently with a strip-type biosensor similar to that for glucose. In this study, we describe the development of a disposable galactose biosensor strip for point-of-care testing. The sensor strip is constructed with screen-printed carbon paste electrode (SPCE) and sample amount (< $100{\mu}L$). The developed strip the galactose level in less than 90 s using bienzymatic system of galactose oxidase (GAO) and horseradish peroxidase (HRP). The effects of pH, mediator (1,1-ferrocenedimethanol) concentration, ratio of enzymes, and applied potential were determined preliminarily with glassy carbon electrodes, and optimized further with the strip-type electrodes. The sensor exhibits linear response in the range of $0{\sim}400{\mu}M$ ($r^2$ = 0.997, S/N = 3). Since a low working potential, in principle, the fabricated disposable galactose biosensor has -100 mV (vs. Ag/AgCl), it is applied for the detection of galactose, interfering responses from common interferents such as ascorbic acid, uric acid and acetaminophen could be minimized. The sensor has been used to determine the total galactose level in standard samples with satisfactory reproducibility (CV = 5 %).