DOI QR코드

DOI QR Code

Refractometric Glucose Biosensor Incorporating a Vertically Coupled Microring Resonator in Polymeric Waveguides

수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서

  • Kim, Gun-Duk (Department of Electronic Engineering, Kwangwoon University) ;
  • Son, Keun-Sik (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Hak-Soon (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Ki-Do (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2008.04.30

Abstract

A refractometric glucose biosensor incorporating a vertically coupled microring resonator in polymers was proposed and realized. The ring was covered with a target analyte of glucose solution with a certain concentration, so that its effective refractive index could be altered and, as a result, the resonance wavelength of the sensor was shifted. Therefore the concentration of the glucose solution can be estimated by observing the shift in the resonance wavelength. Two schemes were exploited for enhancing the sensitivity of the sensor. First, the effective refractive index of the polymeric waveguide used for the resonator sensor was adjusted to approach that of the target analyte as best as possible. Second, the ring waveguide, which serves as a crucial sensing part, was appropriately over-etched to enlarge its contact area with the analyte. The proposed resonator sensor was designed with the beam propagation method. The refractive indices of the core and cladding polymer involved were 1.430 and 1.375 respectively, leading to the waveguide's effective refractive index of ${\sim}1.390$, which is faiirly close to that of the glucose solution of ${\sim}1.333$. The prepared ring resonator with the $400-{\mu}m$ radius exhibited the free spectral range of 0.66 nm, the bandwidth of 0.15 nm, and the quality factor of 10,000. For the sensor operating at 1,550 nm wavelength, the achieved sensitivity was as great as 0.28 pm/(mg/dL), which is equivalent to 200 nm/RIU.

본 논문에서는 굴절률 감지 방식의 수직 결합형 폴리머 마이크로링 공진기 기반 글루코스 바이오 센서를 제안하고 구현하였다. 이 센서에서 상부 클래딩 역할을 하는 글루코스 분석 대상물의 농도 변화는 링 공진기의 공진파장 이동을 측정함으로써 얻어진다. 특히, 센서의 감도를 향상시키기 위해 다음과 같은 방법을 사용하였다. 첫째로, 분석 대상물에 근접한 유효굴절률을 갖는 폴리머 도파로 구조를 공진기 센서에 도입하였다. 둘째로, 분석 물질의 접촉면적을 확대하기 위해 측면 클래딩층이 충분히 식각된 pedestal 링 도파로 구조를 사용하였다. 제안된 공진기 센서는 빔전파 방법을 사용하여 설계하고 분석하였다. 사용된 코어 및 클래딩용 폴리머의 굴절률은 각각 1.430과 1.375였으며, 링 반경은 $400\;{\mu}m$였다. 이 때 얻어진 도파로의 유효굴절률은 ${\sim}1.390$였으며 글루코스 수용액의 굴절률 1.333와 매우 근접하였다. 제작된 소자의 기본적인 전달특성은 FSR(free spectral range) 0.66 nm, 대역폭 ${\sim}0.15\;nm$, Q 값 10,000 이었다. 1550 nm 광파장 대역에서 얻어진 측정 결과를 살펴보면, 센서 감도는 ${\sim}0.28\;pm$/(mg/dL)였으며, 이에 따른 굴절률 변화 감도는 ${\sim}200\;nm/RIU$였다.

Keywords

References

  1. V. Passaro, F. Dell'Olio, B. Casamassima and F. De Leonardis, "Guided-wave optical biosensors," Sensors, vol. 7, pp. 508-536, 2007 https://doi.org/10.3390/s7040508
  2. C. Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonaotrs for biochemical sensing appications," IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 1, pp. 134-142, 2006 https://doi.org/10.1109/JSTQE.2005.862945
  3. C. Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol., vol. 24, no. 3, pp. 1395-1402, 2006 https://doi.org/10.1109/JLT.2005.863333
  4. S. Y. Cho and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett., vol. 18, no. 20, pp. 2096-2098, 2006 https://doi.org/10.1109/LPT.2006.883210
  5. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-insulator microring resonaotr for sensitive and label-free biosensing," Opt. Exp., vol. 15, no. 12, pp. 7610-7615, 2007 https://doi.org/10.1364/OE.15.007610
  6. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van. S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, "Optical sensing of biomolecules using microring resonators," IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 1, pp. 145-155, 2006 https://doi.org/10.1109/JSTQE.2005.863003
  7. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, "Vertically coupled glass microring resonator channel dropping filters," IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 215-217, 1999 https://doi.org/10.1109/68.740708
  8. C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., vol. 83, no. 8, pp. 1527-1529, 2003 https://doi.org/10.1063/1.1605261
  9. B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," Wiley, 1991, Chap. 9, pp. 313
  10. V. Passaro, F. Dell'Olio, and F. De Leonardis, "Ammonia optical sensing by microring resonators," Sensors, vol. 7, pp. 2741-2749, 2007 https://doi.org/10.3390/s7112741
  11. Y. Liu, P. Hering, and M. O. Scully, "An integrated optical sensor for measuring glucose concentration," Appl. Phys. B, vol. 54, pp. 18-23, 1992 https://doi.org/10.1007/BF00331729
  12. D. Chaudhari, L. C. West, C. W. Roberts, and Y. Lu, "Highly compact optical waveguides with a novel pedestal geometry," IEEE Photon. Technol Lett., vol. 7, no. 5, pp. 526-528, 1995 https://doi.org/10.1109/68.384532