• 제목/요약/키워드: Glucose Uptake

검색결과 435건 처리시간 0.03초

지구성 운동과 Ginsenoside Rb1가 쥐 골격근의 AMP-Activated Protein Kinase(APMK), Phosphatidylinositol 3-Kinase(PI3K) 발현 및 Glucose Uptake에 미치는 영향 (Effects of Endurance Exercise and Ginsenoside Rb1 on AMP-Activated Protein Kinase, Phosphatidylinositol 3-Kinase Expression and Glucose Uptake in the Skeletal Muscle of Rats)

  • 정현령;신영호;강호율
    • 한국식품영양과학회지
    • /
    • 제42권8호
    • /
    • pp.1197-1203
    • /
    • 2013
  • 본 연구는 2주간의 지구성 운동과 ginsenoside $Rb_1$이 쥐골격근의 AMPK insulin signaling($tAMPK{\alpha}$, $pAMPK{\alpha}$ $Thr^{172}$)과 PI3K insulin signaling pathway(pIRS-1 $Tyr^{612}$, PI3K $p^{85}$, pAkt $Ser^{473}$) 발현 및 glucose uptake에 미치는 영향을 분석하였다. 골격근내 glucose uptake에서는 비교집단과 비교하여 운동집단(59.4%), $Rb_1$집단(70.5%) $Rb_1/Ex$집단(58.6%)에서 유의하게 증가하였다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 AMPK insulin signaling pathway에 미치는 효과를 조사한 결과 비교집단에 비해 $AMPK{\alpha}$(Ex, 28.6%; $Rb_1$, 28.5%; $Rb_1/Ex$, 29.8%), $pAMPK{\alpha}$ $Thr^{172}$(Ex, 35.1%; $Rb_1$, 35.3%; $Rb_1/Ex$, 30.9%)의 발현이 유의하게 증가한 것을 알 수 있었다. 2주간의 지구성 운동과 ginsenoside $Rb_1$이 PI3K insulin signaling pathway에 미치는 효과를 알아본 결과 비교집단과 비교하여 IRS-1, PI3K $p^{85}$에서는 유의한 차이가 없었으나 pAkt $Ser^{473}$$Rb_1$ 집단에서 유의하게 증가한 것을 알 수 있었다. 이상의 결과를 종합해 볼 때, ginsenoside $Rb_1$은 운동과 더불어 근육 세포내 AMPK의 활성화와 근육 내 glucose uptake를 증가시켜 제2형 당뇨병 예방과 치료에 효과가 있을 것으로 생각된다. 그러나 본 연구의 결과로 PI3K insulin signaling pathway의 항당뇨 효과는 설명하기는 부족하다고 판단되며 추후 본 연구의 결과를 기초로 ginsenoside $Rb_1$의 농도, 처치시간, 처치방법을 고려한 후속 연구가 필요할 것으로 생각된다.

Tangeretin Improves Glucose Uptake in a Coculture of Hypertrophic Adipocytes and Macrophages by Attenuating Inflammatory Changes

  • Shin, Hye-Sun;Kang, Seong-Il;Ko, Hee-Chul;Park, Deok-bae;Kim, Se-Jae
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.93-100
    • /
    • 2017
  • Obesity is characterized by a state of chronic low-grade inflammation and insulin resistance, which are aggravated by the interaction between hypertrophic adipocytes and macrophages. In this study, we investigated the effects of tangeretin on inflammatory changes and glucose uptake in a coculture of hypertrophic adipocytes and macrophages. Tangeretin decreased nitric oxide production and the expression of interleukin (IL)-6, $IL-1{\beta}$, tumor necrosis $factor-{\alpha}$, inducible nitric oxide synthase, and cyclooxygenase-2 in a coculture of 3T3-L1 adipocytes and RAW 264.7 cells. Tangeretin also increased glucose uptake in the coculture system, but did not affect the phosphorylation of insulin receptor substrate (IRS) and Akt. These results suggest that tangeretin improves insulin resistance by attenuating obesity-induced inflammation in adipose tissue.

박테리아의 산소소비량에 관한 실험적 고찰 (Respiratory Activity of Bacteria in Various Concentrations of Glucose)

  • 최명자
    • Journal of Preventive Medicine and Public Health
    • /
    • 제10권1호
    • /
    • pp.134-137
    • /
    • 1977
  • The most efficient method for reducing the organic content of dilute liquid waste is by aerobic-biological treatment. Basically, the organisms responsible for treatment possess the ability to decompose complex organic compounds and to use the energy so liberated for their bodily functions: reproduction, growth, locomotion and so on. That part of organic matter used to produce energy is converted to the essentially stable end products of carbon dioxide, water and ammonia, while the remainder is converted to new cells which can be settled and thus removed from the liquid before the waste is discharged to the receiving body water. Oxygen must be supplied continuously during the aerobic process. In the field of sewage treatment the Warburg respirometer is used mainly for the measurement of the oxygen uptake of samples. In this experiment the Warburg constant volume respirometer was used to determine the oxygen uptake by bacteria in the presence of various glucose concentrations. The rate of oxygen uptake by the bacteria was expressed as the respiratory quotient. The result indicated that the oxygen uptake was proportional to the glucose concentration. The expecting equation of the regression line was Y=7.7+0.12X where Y: respiratory quotient, ${\mu}l.\;O_2$ taken up/mg. dry wt. bacterium/hr. X: concentration of glucose, mg/l

  • PDF

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

The Stimulatory Effect of Essential Fatty Acids on Glucose Uptake Involves Both Akt and AMPK Activation in C2C12 Skeletal Muscle Cells

  • Park, So Yeon;Kim, Min Hye;Ahn, Joung Hoon;Lee, Su Jin;Lee, Jong Ho;Eum, Won Sik;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권3호
    • /
    • pp.255-261
    • /
    • 2014
  • Essential fatty acid (EFA) is known to be required for the body to function normally and healthily. However, the effect of EFA on glucose uptake in skeletal muscle has not yet been fully investigated. In this study, we examined the effect of two EFAs, linoleic acid (LA) and ${\alpha}$-linolenic acid (ALA), on glucose uptake of C2C12 skeletal muscle cells and investigated the mechanism underlying the stimulatory effect of polyunsaturated EFAs in comparison with monounsaturated oleic acid (OA). In palmitic acid (PA)-induced insulin resistant cells, the co-treatment of EFAs and OA with PA almost restored the PA-induced decrease in the basal and insulin-stimulated 2-NBDG (fluorescent D-glucose analogue) uptake, respectively. Two EFAs and OA significantly protected PA-induced suppression of insulin signaling, respectively, which was confirmed by the increased levels of Akt phosphorylation and serine/threonine kinases ($PKC{\theta}$ and JNK) dephosphorylation in the western blot analysis. In PA-untreated, control cells, the treatment of $500{\mu}M$ EFA significantly stimulated 2-NBDG uptake, whereas OA did not. Phosphorylation of AMP-activated protein kinase (AMPK) and one of its downstream molecules, acetyl-CoA carboxylase (ACC) was markedly induced by EFA, but not OA. In addition, EFA-stimulated 2-NBDG uptake was significantly inhibited by the pre-treatment of a specific AMPK inhibitor, adenine 9-${\beta}$-D-arabinofuranoside (araA). These data suggest that the restoration of suppressed insulin signaling at PA-induced insulin resistant condition and AMPK activation are involved at least in the stimulatory effect of EFA on glucose uptake in C2C12 skeletal muscle cells.

신장 근위세뇨관세포에서 고포도당이 IGF-I 결합과 포도당운반계에 미치는 영향 (Effects of high glucose concentration on IGF-I binding and glucose transporters in renal proximal tubule cells)

  • 한호재;박권무;손창호;윤용달
    • 대한수의학회지
    • /
    • 제37권2호
    • /
    • pp.301-310
    • /
    • 1997
  • Diabetes mellitus is associated with a wide range of pathophysiological in the kidney. This study was designed to examine the effects of high glucose concentration on IGF-I binding and glucose transporters in renal proximal tubule cells. The results were as follows : The binding of $^{125}I-IGF-I$ reached the peak at the 30 minutes and gradually decreased by the time dependent manner. The binding of $^{125}I-IGF-I$ was inhibited by the unlabelled IGF-I($10^{-14}{\sim}10^{-8}M$) in a concentration dependent manner. The relative affinity of IGF-I receptor for IGF-I, IGF-II and insulin exhibited typical type 1 binding(IGF-I > insulin > IGF-II). However IGF-II did not compete for the cultured cell membrane $^{125}I-IGF-I$ binding site at $10^{-14}{\sim}10^{-8}M$. Under optimal conditions, IGF-I binding to the membranes from 5mM and 20mM glucose treated cells was analyzed. It was found that 20mM glucose treated cells exhibited higher binding activity for IGF-I. In order to further substantiate this increase in IGF-I binding sites, we performed affinity-labelling studies. The cross-linked cell membrane subjected to SDS-PAGE; labelled material was detected by autoradiography. 20mM glucose treated cells exhibited higher levels. The initial rate of $methyl-{\alpha}-D-glucopyranoside({\alpha}-MG)$ uptake was significantly lower($74.41{\pm}6.71%$) in monolayers treated with 20mM glucose than those of 5mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. IGF-I significantly increased ${\alpha}-MG$ uptake in both 5mM and 20mM glucose treated cells. However, 3-O-MG uptake was not affected by IGF-I in both conditions. In conclusion, 20mM glucose increased binding sites of $^{125}I-IGF-I$, inhibited Na/glucose cotransporter activity. But 20mM glucose did not change facilitated glucose transporter.

  • PDF

Synthesis and In vitro Evaluation of 99mTc-diglucosediethylenetriamine (DGTA) as a Potential Tumor Imaging Agent

  • Lee, Sang-Ju;Oh, Seung-Jun;Kim, Jung-Young;Ryu, Jin-Sook;Kim, Seog-Young;Moon, Dae-Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2410-2412
    • /
    • 2011
  • Using a single step chemical synthesis, we synthesized the potential tumor imaging agent $^{99m}Tc$-diglucose-diethylenetriamine (DGTA) from diethylenetriamine and natural D-glucose. 10 min Incubation of 10 mg of precursor with 50 ${\mu}g$ of $SnCl_2{\cdot}2H_2O$ at room temperature yielded over 95% of $^{99m}Tc$ labeling. The stability for 6 hours in saline or human plasma was over 90%. In vitro tumor cell uptake assays using the SNU-C5 and 9 L cell lines showed that, in 0-400 mg/dL glucose medium, cell uptake of $^{99m}Tc$-DGTA was 1.5-8 times higher than that of [$^{18}F$]FDG. Moreover, [$^{18}F$]FDG uptake was dependent on glucose concentration in the medium, whereas cellular uptake of $^{99m}Tc$-DGTA was not dependent on glucose concentration, suggesting that the two compounds have different uptake mechanisms by tumor cells.

대장균에 있어서 영양물 흡수에 미치는 Palmitoylcarnitine과 인삼 Saponin의 영향 (The effect of Palmitoylcarnitine and Ginseng Saponin on the nutrient uptake in Escherichia coli B.)

  • 김순옥;이호용;이종삼;최영길;조기승
    • 미생물학회지
    • /
    • 제22권3호
    • /
    • pp.151-156
    • /
    • 1984
  • When enterobacterium, Escherichia coli B was cultivated with normal media in the presence of $0.2{\sim}0.6%$ Palmitoylcarnitine and $0.05{\sim}0.2%$ Ginseng Saponin, maximum population growth of the bacteria was presented 71% and 31%, respectively. Such a result, in vitro test, was concluded from the result that both detergents stimulated $C^{14}$-glucose, $C^{14}$-alanine and $C^{14}$-phosphatidylethanolamine uptake into the membrane of cells. The pre-treatment of cells with different amounts of Palmitoylcarnitine from $0.005{\sim}0.05{\mu}$ moles represented a significant increase of uptake, 33% of $C^{14}$-glucose, 129% of $C^{14}$-alanine and 158% of phosphatidylethanolamine at the concentration of $0.05{\mu}$ moles of Palmitoylcarnitine. On the other hand, the result of $C^{-2}%$ Saponin treatment showed the maximum value of uptake, 17% of $C^{14}$-glucose and 112% of $C^{14}$-alanine. In case of $C^{14}$-phosphatidylethanolamine, the maximum uptake showed 25% of increase at the concentration of $C^{14}$% Saponin.

  • PDF

Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

  • Hasegawa, Yasushi;Nakagawa, Erina;Kadota, Yukiya;Kawaminami, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.111-118
    • /
    • 2017
  • Objective: Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of ${\alpha}$-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods: In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results: While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion: Lignosulfonic acid may be useful as a functional anti-diabetic component of food.

Psidium guajava L. leaf extract inhibits adipocyte differentiation and improves insulin sensitivity in 3T3-L1 cells

  • Choi, Esther;Baek, Seoyoung;Baek, Kuanglim;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.568-578
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Psidium guajava L. (guava) leaves have been shown to exhibit hypoglycemic and antidiabetic effects in rodents. This study investigated the effects of guava leaf extract on adipogenesis, glucose uptake, and lipolysis of adipocytes to examine whether the antidiabetic properties are mediated through direct effects on adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with 25, 50, 100 ㎍/mL of methanol extract from guava leaf extract (GLE) or 0.1% dimethyl sulfoxide as a control. Lipid accumulation was evaluated with Oil Red O Staining and AdipoRed assay. Immunoblotting was performed to measure the expression of adipogenic transcription factors, fatty acid synthase (FAS), and AMP-activated protein kinase (AMPK). Glucose uptake under basal or insulin-stimulated condition was measured using a glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose. Lipolysis from fully differentiated adipocytes was measured by free fatty acids release into the culture medium in the presence or absence of epinephrine. RESULTS: Oil Red O staining and AdipoRed assay have shown that GLE treatment reduced lipid accumulation during adipocyte differentiation. Mitotic clonal expansion, an early essential event for adipocyte differentiation, was inhibited by GLE treatment. GLE inhibited the expression of transcription factors involved in adipocyte differentiation, such as peroxisome proliferator-activated receptor 𝛄 (PPAR𝛄), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP-1c). FAS expression was also decreased while the phosphorylation of AMPK was increased by GLE treatment. In addition, GLE increased insulin-induced glucose uptake into adipocytes. In lipid-filled mature adipocytes, GLE enhanced epinephrine-induced lipolysis but reduced basal lipolysis dose-dependently. CONCLUSIONS: The results show that GLE inhibits adipogenesis and improves adipocyte function by reducing basal lipolysis and increasing insulin-stimulated glucose uptake in adipocytes, which can be partly associated with antidiabetic effects of guava leaves.