• Title/Summary/Keyword: Glucose 6-phosphate dehydrogenase

Search Result 186, Processing Time 0.024 seconds

Effect of Restrict Feeding, Roxarsone or Its Analogues in Inducing Fatty Livers in Mule Ducks

  • Chen, Kuo Lung;Chiou, Peter W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.241-248
    • /
    • 2005
  • This study is aimed at understanding the role of arsenic in Roxarsone in causing fatty livers in mule ducks. One hundred 10-week-old mule ducks were randomly divided into 5 groups. Ducks received 2 weeks of various treatments followed by 2 weeks of withdrawal. The treatments were non-treatment (control), 300 mg/kg Roxarsone inclusion for 2 weeks ($1^{st}$ and $2^{nd}$ week), Roxarsone inclusion for one week ($2^{nd}$ week only), restrict feeding, or Roxarsone analogue (3-nitro-4-hydroxyphenyl acid) inclusion. Results showed that feed intake and body weight in the Roxarsone groups and the restrict feeding group decreased significantly during the treatment period. However only the liver and heart weights were significantly decreased (p<0.05) in the restrict feeding group. Fatty acid synthetase (FAS) activity showed a significant decrease (p<0.05) in the Roxarsone groups and the restrict feeding group, two-week-Roxarsone treatment significantly increased NADP-malic dehydrogenase (MDH) activity compared to the restrict (p<0.05). After 2 weeks drug withdrawal, the 1-week-Roxarsone or restrict feeding group showed significantly increased (p<0.05) glucose-6-phosphate dehydrogenase (G-6-PDH) activity (p<0.05). Two-week-Roxarsone treatment significantly decreased (p<0.05) the high density lipoprotein (HDL) and increased (p<0.05) the low density lipoprotein (LDL) and very low density lipoprotein (VLDL) ratio. After drug withdrawal, the 1-week-Roxarsone or restrict feeding group showed significantly increased (p<0.05) creatine kinase (CK) activity. The 2-week-Roxarsone treatment group showed significantly increased (p<0.05) aspartate aminotransferase (AST) activity. The restrict feeding treatment group showed significantly decreased (p<0.05) total protein (TP) concentration. After drug withdrawal, the related enzyme activities in the blood that reflected the liver function were restored to the normal physiological range, except for the total bilirubin concentration and CK activity in the 1-week-Roxarsone group. This group showed a significant increase (p<0.05). Thus, the reasons for liver enlargement in the Roxarsone and restrict feeding groups were different.

Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs

  • Li, Wei;Li, Bo;Lv, Jiaqi;Dong, Li;Zhang, Lili;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.686-695
    • /
    • 2018
  • Objective: The objective of this study was to investigate the effects of dietary choline supplementation on hepatic lipid metabolism and gene expression in finishing pigs with intrauterine growth retardation (IUGR). Methods: Using a $2{\times}2$ factorial design, eight normal birth weight (NBW) and eight IUGR weaned pigs were fed either a basal diet (NBW pigs fed a basal diet, NC; IUGR pigs fed a basal diet, IC) or a diet supplemented with two times more choline than the basal diet (NBW pigs fed a high-choline diet, NH; IUGR pigs fed a high-choline diet, IH) until 200 d of age. Results: The results showed that the IUGR pigs had reduced body weight compared with the NBW pigs (p<0.05 from birth to d 120; p = 0.07 from d 120 to 200). Increased (p<0.05) free fatty acid (FFA) and triglyceride levels were observed in the IUGR pigs compared with the NBW pigs. Choline supplementation decreased (p<0.05) the levels of FFAs and triglycerides in the serum of the pigs. The activities of malate dehydrogenase and glucose 6-phosphate dehydrogenase were both increased (p<0.05) in the livers of the IUGR pigs. Choline supplementation decreased (p<0.05) malate dehydrogenase activity in the liver of the pigs. Gene expression of fatty acid synthase (FAS) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation decreased (p<0.05) FAS and acetyl-CoA carboxylase ${\alpha}$ expression in the livers of the IUGR pigs. The expression of carnitine palmitoyl transferase 1A (CPT1A) was lower (p<0.05) in the IC group than in the other groups, and choline supplementation increased (p<0.05) the expression of CPT1A in the liver of the IUGR pigs and decreased (p<0.01) the expression of hormone-sensitive lipase in both types of pigs. The gene expression of phosphatidylethanolamine N-methyltransferase (PEMT) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation significantly reduced (p<0.05) PEMT expression in the liver of the IUGR pigs. Conclusion: In conclusion, the lipid metabolism was abnormal in IUGR pigs, but the IUGR pigs consuming twice the normal level of choline had improved circulating lipid parameters, which could be related to the decreased activity of nicotinamide adenine dinucleotide phosphate-generating enzymes or the altered expressions of lipid metabolism-related genes.

Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice

  • Cho, Su-Jung;Jung, Un Ju;Kim, Hye-Jin;Ryu, Ri;Ryoo, Jae Young;Moon, Byoung Seok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic ${\beta}$-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic ${\beta}$-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.

The Changes of Peroxidase Activity and Isoperoxidase Patterns from Pine Needles under the Salinary Stress (염분스트레스에 의한 소나무잎 Peroxidase의 활성 및 Isozyme Pattern의 변화)

  • 이미영
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.315-321
    • /
    • 1997
  • Peroxidase activities and isozyme patte군 of the pine needles (Pinus densiflora) were examined and compared in the coastal regions of Anmyum-Do(Choongnam, Taean-Gun) and inland regions of Shinchang-Myun(Choongnam, Asan-City). The pine needle peroxidase from Anmyum-Do showed approximately three times higher specfic activity than Shinchang pine needle peroxidase. The pine needle extracts of Anmyun-Do and Shinchang contained three anionic isoperoxidases, named A1, A2 and A3, when subjected to starch gel electrophoresis at pH 7.0. Cjationic isoperoxidases could not be found in both extracts., However, there existed unique isoperoxidase An only from the extracts of Anmyun-Do pine needles under the salinary environment. Moreover, the specific activities of catalase and glucose-6-phosphate dehydrogenase from Anmyun-Do, known for the inducible enzymes under the stress condition, were about 1.8 times higher than those of Shinchang pine needles. However, the specific activities of other enzymes did not show great differences between the two regions. Considering the above results of the higher specific activity of peroxidase and the unique expression of isoperoxidase An, pine needle peroxidase might involve in the defence mechanism against the salinary stress of Anmyun-Do.

  • PDF

A Fatal Case of Methylene Blue Threatment Failure in Methemoglobinemia (메틸렌블루에 반응하지 않는 메트헤모글로빈혈증 1례)

  • Shim, Ji-Yae;Seo, Yun-Seok;Yang, Jong-Oh;Lee, Eun-Young;Hong, Sae-Yong;Gil, Hyo-Wook
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.2
    • /
    • pp.151-154
    • /
    • 2006
  • Acute toxic methemoglobinemia is an infrequent complication of the use of various drugs. Severe methemoglobinemia is very often fatal. Methylene blue is an effective drug in the treatment of methemoglobinemia patients. However, failure to respond to methylene blue has been described in patients with sulfhemoglobinemia, chlorate poisoning, and glucose-6-phosphate dehydrogenase deficiency. It is even possible that hemolysis may occur due to methylene blue treatment itself. We encountered a case of a 71-year-old woman who developed methemoglobinemia caused by alprazolam intoxication. She presented with hemolytic anemia and did not respond to methylene blue. In spite of concerted N-acetylcysteine therapy, the hemolytic anemia became aggravated and the patient died eleven days after intoxication.

  • PDF

Activation of acetylcholine receptor elicits intracellular Ca2+ mobilization, transient cytotoxicity, and induction of RANKL expression

  • Heo, Seong-Jong;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.119-123
    • /
    • 2016
  • Acetylcholine receptors (AChR) including muscarinic and nicotinic AChR are widely expressed and mediate a variety of physiological cellular responses in neuronal and non-neuronal cells. Notably, a functional cholinergic system exists in oral epithelial cells, and nicotinic AChR (nAChR) mediates cholinergic anti-inflammatory responses. However, the pathophysiological roles of AChR in periodontitis are unclear. Here, we show that activation of AChR elicits increased cytosolic $Ca^{2+}([Ca^{2+}]_i)$, transient cytotoxicity, and induction of receptor activator of nuclear factor kappa-B ligand (RANKL) expression. Intracellular $Ca^{2+}$ mobilization in human gingival fibroblast-1 (hGF-1) cells was measured using the fluorescent $Ca^{2+}$ indicator, fura-2/AM. Cytotoxicity and induction of gene expression were evaluated by measuring the release of glucose-6-phosphate dehydrogenase and RT-PCR. Activation of AChR in hGF-1 cells by carbachol (Cch) induced $[Ca^{2+}]_i$ increase in a dose-dependent manner. Treatment with a high concentration of Cch on hGF-1 cells caused transient cytotoxicity. Notably, treatment of hGF-1 cells with Cch resulted in upregulated RANKL expression. The findings may indicate potential roles of AChR in gingival fibroblast cells in bone remodeling.

Functionalized Poplar Powder as a Support Material for Immobilization of Enoate Reductase and a Cofactor Regeneration System

  • Li, Han;Cui, Xiumei;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.607-616
    • /
    • 2019
  • In this study, functionalized poplar powder (FPP) was used as a support material for the immobilization of enoate reductase (ER) and glucose-6-phosphate dehydrogenase (GDH) by covalent binding. Under optimal conditions, the immobilization efficiency of ER-FPP and GDH-FPP was 95.1% and 84.7%, and the activity recovery of ER and GDH was 47.5% and 37.8%, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis indicated that FPP was a suitable carrier for enzyme immobilization. ER-FPP and GDH-FPP exhibit excellent thermal stabilities and superior reusability. Especially, ER-FPP and GDH-FPP enable the continuous conversion of 4-(4-Methoxyphenyl)-3-buten-2-one with $NAD^+$ recycling. While the immobilization strategies established here were simple and inexpensive, they exploited a new method for the immobilization and application of ER and its cofactor recycling system.

Effect of an extract of Bauhinia variegata leaves on chronic arsenic intoxication in mice (Mus musculus): A preliminary study

  • Biswas, Surjyo Jyoti;Ghosh, Goutam
    • CELLMED
    • /
    • v.4 no.3
    • /
    • pp.20.1-20.7
    • /
    • 2014
  • Ethanolic leaf extract of Bauhinia variegata has been tested for its possible antioxidant potentials against sodium arsenite induced toxicity in mice. Mice were randomized into two groups of five and fifty mice. Group I consisting of 5 mice without any treatment with food and water ad libitum which served as normal control. Group II mice were fed with sodium arsenite in drinking water at 100 ppm concentration for two monthsthen they were segregated into five groups which were treated differently. Group II a mice received only arsenic as sodium arsenite with drinking water, Group II b were fed chronically 1 : 20 alcohol to distilled water (vehicle), Group II c, d, e mice were orally fed 50 mg/kg, 150 mg/kg and 250 mg/kg of B. variegata leaf extract of once daily for 15 and 30 days respectively along with arsenic. Several toxicity marker enzymes such as gamma glutamyl transferase, lactate dehydrogenase, aspartate and alanine aminotransferase, acid and alkaline phosphatase, catalase and superoxide dismutase along with haematological variables such as glucose 6-phosphate dehydrogenase, creatinine, bilirubin, haemoglobin and sugar in different groups of treated and control mice were studied. Results obtained from the in vivo experiment revealed that administration of sodium arsenite caused a significant increase in some enzymes while decrease in some. A similar trend was also observed with haematological variables. In contrast B. variegata treatment at 150 mg/kg favourably modulated these alterations and maintained the antioxidant status than other two doses i.e. 50 mg/kg and 250 mg/kg thereby making it a good candidate to be used as supportive palliating measures in arsenic induced toxicity.

Protective effect of Asystasia gangetica reduced oxidative damage in the small intestine of streptozotocin-induced diabetic rats

  • Kumar, K. Asok;Umamaheswari, M.;Sivashanmugam, A.T.;Subhadradevi, V.;Somanathan, S.S.;Ravi, T.K.
    • Advances in Traditional Medicine
    • /
    • v.9 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • Oxidative stress plays an important role in the pathogenesis of various diabetic complications and small intestine is vulnerable to damage resulting in morphological and functional changes. In this study, the effects of Asystasia gangetica leaf extract (AGLE) on oxidative stress status in small intestine of diabetic rats were examined. The leaves of Asystasia gangetica was extracted with 70% ethanol. Oral administration of AGLE once daily (100 mg/kg and 200 mg/kg b.w.) for 28 days to diabetic rats significantly (P < 0.05) increased antioxidant levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione, GSSH, carbohydrate metabolizing enzyme, glucose-6-phosphate dehydrogenase. The increased levels of protein carbonyl content, lipid peroxidation and xanthine oxidase/xanthine dehydrogenase in diabetic rats were reverted back to near normal levels on treatment with AGLE. Both doses of AGLE offered significant activity (P < 0.01) against oxidative damage and were comparable with standard, glibenclamide. The results revealed the occurrence of oxidative stress in small intestine during diabetes and suggest the potential of AGLE as an antioxidant in protecting the tissue defense system against oxidative damage in streptozotocin-induced diabetes.

Early Diet Dilution with 40% Rice Hull Induces Lower Body Fat and Lipid Metabolic Programming in Peking Ducks

  • Guo, Xiao Yang;Fang, Yong Jun;Wu, Ling Ying
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.341-347
    • /
    • 2013
  • This study was conducted to evaluate the effect of early diet dilution with 40% rice hull on growth performance, carcass characteristic and composition of meat-type ducks, and to reveal the possible mechanism for decreased body fat deposition. 160 1-day-old White Peking ducks with initial body weight of $44.5{\pm}1.0$ g were allotted to two treatments with 8 replicate pens per treatment and 10 ducks per pen (5 male and 5 female). Ducks were fed with the experimental starter diets diluted with 0% (control, RH0), 40% rice hull (RH40) during 8 to 14 d of age, respectively. Thereafter, all ducks were fed with grower diet. Ducks fed with RH40 diet from 8 to 14 d of age increased (p<0.05) feed intake, decreased (p<0.05) body weight, body weight gain and adjusted feed intake (excluded rice hull), abdominal fat, skin with fat, and fat content in carcass, and reduced (p<0.05) activities of hepatic malic dehydrogenase, glucose-6-phosphate dehydrogenase and fatty acid synthetase. When diet dilution was withdrawn in the re-fed period from 15 to 42 d of age, full compensatory growth of body weight, breast meat and leg meat weight were attained. However, ducks were still less (p<0.05) carcass fat content and showed continually lower (p<0.05) hepatic lipogenic enzyme activities at the market age in RH40 ducks than the control. These results indicated that diluting diet with 40% rice hull during 8 to 14 d of age might be a suitable method to improve feed efficiency, and to reduce carcass fat deposition in the production of meat-type ducks.