• Title/Summary/Keyword: Gluconobacter

Search Result 23, Processing Time 0.035 seconds

Production of D-sorbitol and L-sorbose from Jerusalem artichoke by Zymomonas mobilis and Gluconobacter sMboxpydans (Zymomonas mobilis와 Gluconobacter suboxydans를 이용한 돼지감자로부터 D-sorbitol 및 L-sorbose 생성에 관한 연구)

  • 전억한;김원극
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.10-16
    • /
    • 1993
  • The use of Jerusalem artichoke containing $\beta$-1, 2-fructose oligomer for the production of D-sorbitol and L-sorbose has been studied. The employment of inulinase(0.398%, v/v) for the hydrolysis of 40% (v/w) Jerusalem artichoke juice resulted in 36.7g/1 of glucose and 85.3g/1 of fructose at $50^{\circ}C$. These sugars were utilized as substrates for D-sorbitol and L-sorbose production. Coimmobilization of inulinase and permeabilized cells of Zymomonas mobilis in the mixture of chitin (5%, w/e) and x-carrageenan(4%, w/v) resulted in the production of 30.2g/1 of D-sorbitol by using inulin as a substrate. The process of L-sorbose production from D-sorbitol by Gluconobacter suboxydans was optimized with respect to the substrate concentration, level of dissolved oxygen and glucosic and concentration. Gluconlc acid produced by Zymomonas mobilis from glucose was found to inhibit Gluconobacter suboxtans in conversion of D-sorbitol to L-sorbose. In view of removing such inhibitory effect by gluconic acid, mutants were selected by the NTG (N-methyl-N'-N'-nitro-N-nitrosoguanidlne) treated method. Mutants selected by NTG mutagenesis showed no inhibitory effects of gluconic acrid against L-sorbone production when its concentration increased up to 100g/1. A mutant produced 40.1g/l of L-sorbose in the medium containing 100g/l D-sorbitol and 100g/l-gluconic acid. This result is consider able when compared with L-sorbose concentration (21.7g/1) obtained from the fermentation with wild type strain of Gluconobacter suboxnians.

  • PDF

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda;Kirtil, Hatice Ebrar;Metin, Banu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

The Manufacture of Vinegar from Fallen Persimmons (낙과시를 이용한 식초제조)

  • 김명찬;조기택;심기환
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.103-111
    • /
    • 1980
  • This studies were conducted to make vinegar from the physiologcical fallen persinmon during the ripening fruit. The main components of the persimmon mere investigated for the several focal valieties, Some microke acted on the fermentation of persimmon was isolated. The obtained results were as follows : 1) The hardness of fruit was the hithest for Jangjunsi (long persimmon) The hardness of Bansi and Soosi valieties was decreased vary fast after five or six weeks. 2) The total amount of pectin was increased a little in order of Jangjunsi, Bansi and Soosi. The amount of soluble pectin was increased considerably in order of Soosi, Bansi and Jangjunsi. 3) The amount of total sugar and reducing sugar were increased in order of Bansi, Jangjunsi and Soosi. After five or six weeks the amount of reducing sugar of Soosi and Bansi was increased much. The amount of starch was decreased in order of Bansi, Jangjunsi and Soosi, to trace amounts without significent differences. 4) The amount of Soluble tannin was decreased in order of Bansi, Jangjunsi and Soosi. 5) Main microbes on the fermentation of persimmon vinegar were identified as follows: yeast was proved to be Saccharomyces rouxii, CBS 726, and Acetobacters were Gluconobacter oxydans subsp. suboxydans, Gluconobacter oxyaans subsp, osydans, Acetobaeter pasteurians subsp. xylinum 6) During the fermentation, process of persimmon vinegar the amount of reducing sugar and alcohol were decresed, but that of acidity was increased.

  • PDF

Report of seven unrecorded bacterial species in Korea belonging to the family Acetobacteraceae

  • Jun Heo;Hyorim Choi;Seunghwan Kim;Yiseul Kim;Daseul Lee;Byeong-Hak Han;Seung-Beom Hong;Soon-Wo Kwon
    • Journal of Species Research
    • /
    • v.12 no.spc2
    • /
    • pp.7-14
    • /
    • 2023
  • Several genera belonging to the family Acetobacteraceae were generally considered to be acetic acid bacteria (AAB) which produce acetic acid from alcohols using an oxidation pathway. Some species of the family Acetobacteraceae have been of interest to the industry due to their capability to produce vinegar. In 2018-2020, several bacterial strains were isolated from plants, fruits and vinegar in various regions of the Republic of Korea. Based on the 16S rRNA gene sequences, seven species classified into the family Acetobacteraceae were found to be ones unrecorded in the Republic of Korea, including two Asaia species, one Gluconacetobacter species, three Gluconobacter species and one Komagataeibacter species. As a result, we report Asaia lannensis AF11C3 (=KACC 22050) isolated from plant Chrysanthemum zawadskii, Asaia platycodi AF15C2 (=KACC 22051) isolated from plant Isodon inflexus, Gluconacetobacter liquefaciens C23-3 (=KACC 22064) isolated from fruit of Pyrus pyrifolia, Gluconobacter cerinus BGF2-R2 (=KACC 22053) isolated from fruit of Prunus armeniaca, Gluconobacter kondonii FR39A4 (=KACC 22388) isolated from persimmon fruit, Gluconobacter thailandicus FR36C4 (=KACC 22057) isolated from fruit of Pseudocydonia sinensis and Komagataeibacter melaceti SPV-2 (=KACC 22058) isolated from potato vinegar.

Characteristics of Biocellulose by Gluconobacter uchimurae GYS15 (Gluconobacter uchimurae GYS15 균주로부터 생산되는 Biocellulose의 특성 확인)

  • Lee, Young Sun;Kim, Jae Young;Cha, Mi Yeon;Kang, Hee Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • In order to select a strain that forms a Biocellulose (BC), strain producing acetic acid was selected from commercially available kombucha. Through SM broth it was confirmed that the strain is a gram negative bacteria in the form of rods having no motility through a phase contrast microscope. The result of phylogenetic inference analysis based on 16S rDNA sequence analysis for the identification of strains was most closely related to Gluconobacter uchimurae (G. uchimurae) and was named G. uchimurae GYS15 strain. The strain showed the highest degree of growth when cultured for 14 days under the conditions of pH 5 and $25^{\circ}C$. Moreover, it showed the highest degree of growth in a Glucose addition disaccharide as the optimum carbon source sucrose and fructose. Also, 0.5% NaCl, upon the addition of Malto extract, showed the highest degree of growth. Based on investigation by the optimum growth conditions to confirm the physical properties of BC obtained by culturing G. uchimurae GYS15 strains. The surface structure was observed through an scanning electron microscope (SEM) showed a high networks structure. It until $8.6{\pm}0.38$ times when the water holding capacity is re-absorbed and re-absorbed holding oil up to $6.6{\pm}0.51$ times confirmed. In conclusion, using these material properties, it was possible to confirm the possibility of a variety of cosmetic materials and mask pack materials.

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF

Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112

  • Hu, Zhong-Ce;Liu, Zhi-Qiang;Zheng, Yu-Guo;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.340-345
    • /
    • 2010
  • The culture variables were optimized to increase 1,3-dihydroxyacetone (DHA) production by Gluconohacter oxydans ZJB09112 in shake flasks and bubble column bioreactors. After fermentation in the optimized medium (g/l: yeast extract 5, glycerol 2.5, mannitol 22.5, $K_2HPO_4$ 0.5, $KH_2PO_4$ 0.5, $MgSO_4{\cdot}7H_2O$ 0.1, $CaCO_3$ 2.0, pH 5.0), when five times of glycerol feeding were applied, $161.9{\pm}5.9\;g/l$ of DHA was attained at a $88.7{\pm}3.2%$ conversion rate of glycerol to DHA.

Cellulose Production from Gluconobacter oxydans TQ-B2

  • Shiru Jia;Hongyu Ou;Guibing Chen;Park, Du-Bok;Cho, Ki-An;Mitsuyasu Okabe;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2004
  • Gluconobacter oxydans that produces the cellulose was isolated. In order to confirm the chemical features of cellulose, various spectrophtometeric analysis were carried out using electron microscopy, X-ray diffractogram, and CP/MAS $\^$13/C NMR. The purified cellulose was found to be identical to that of Acetobacter xylinum. For effective production of cellulose, the various carbon and nitrogen sources, mixture of calcium and magnesium ions, and biotin concentration were investigated in flask cultures. Among the various carbon sources, glucose and sucrose were found to be best for the production of cellulose, with maximum concentration of 2.41 g/L obtained when a mixture of 10 g/L of each glucose and sucrose were used. With regard to the nitrogen sources, when 20 g/L of yeast extract was used, the maximum concentration of bacterial cellulose was reached. The concentration of cellulose was increased with mixture of 2 mM of each Ca$\^$2+/ and Mg$\^$2+/. The optimum biotin concentration for the production of cellulose was in the range of 15 to 20mg/L. At higher biotin concentration (25-35mg/L). the bacterial cellulose production was lower.

Dynamics of Mixed-Cultures of Gluconobacter suboxydans and Saccharomyces uvarum

  • Paik, Hyun-Dong;Oh, Doo-Whan
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • A mixed-culture of Gluconobacter suboxydans IFO 3172 and Saccharomyces uvarum IFO 0751 was per-formed in a synthetic medium. the optimal inculum ratio of G. suboydans and S. uvarum for mixed-culture fermentation was 150:1. The optimum pH, incubation temperature and aeration rate for mixed-culture fer- mentation were 5.0, 3$0^{\circ}C$ and 2.25vvm, reapectively. As a result of batch pure-and mixed-culture fer-mentation, specific growth rate in pure-culture of both strain was lower than that in mixed-culture. The yield of cell mass from S. uvarum exclusively decreased. The growth rate of the mixed-culture was very similar to the pure-culture in the begining of culture, but it has been decreased after 16hrs. In the mean time, S. uvarum in mixed-culture fermentation could grow due to fructose converted, but it could not row in pure-culture fermentation. Thus, the relationship was a sort of commensalism. The kinetic parameters cal-culated through steady-state results during continuous fermentations are as follows :{TEX}$$\mu$_{max1}${/TEX}=0.118({TEX}$h^{-1}${/TEX}), {TEX}$Ks_{1}${/TEX}=0.330(g/L),:{TEX}$$\mu$_{max2}${/TEX}=0.162({TEX}$h^{-1}${/TEX}), {TEX}$Ks_{2}${/TEX}=0.038(g/L). The yield of bacterial cell mass relatively constant, but yield of yest cell mass was gradually decreased.

  • PDF