• Title/Summary/Keyword: Glucan hydrolase

Search Result 9, Processing Time 0.03 seconds

A MALDI-MS-based Glucan Hydrolase Assay Method for Whole-cell Biocatalysis

  • Ahn, Da-Hee;Park, Han-Gyu;Song, Won-Suk;Kim, Seong-Min;Jo, Sung-Hyun;Yang, Yung-Hun;Kim, Yun-Gon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.69-77
    • /
    • 2019
  • Screening microorganisms that can produce glucan hydrolases for industrial, environmental, and biomedical applications is important. Herein, we describe a novel approach to perform glucan hydrolase screening-based on analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) spectra-which involves degradation of the oligo- and polysaccharides. As a proof-of-concept study, glucan hydrolases that could break down glucans made of several glucose units were used to demonstrate the MALDI-MS-based enzyme assay. First, the enzyme activities of ${\alpha}$-amylase and cellulase on a mixture of glucan oligosaccharides were successfully discriminated, where changes of the MALDI-MS profiles directly reflected the glucan hydrolase activities. Next, we validated that this MALDI-MS-based enzyme assay could be applied to glucan polysaccharides (i.e., pullulan, lichenan, and schizophyllan). Finally, the bacterial glucan hydrolase activities were screened on 96-well plate-based platforms, using cell lysates or samples of secreted enzyme. Our results demonstrated that the MALDI-MS-based enzyme assay system would be useful for investigating bacterial glucoside hydrolases in a high-throughput manner.

Characterization of a Lichenase Isolated from Soil Metagenome

  • Kim, Sang-Yoon;Oh, Doo-Byoung;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1699-1706
    • /
    • 2014
  • A lichenase gene (mt-lic) was identified for the first time through function-based screening of a soil metagenomic library. Its deduced amino acid sequence exhibited a high degree of homology with endo-${\beta}$-1,3-1,4-glucanase (having both lichenase and chitosanase activities), encoded by the bgc gene of Bacillus circulans WL-12. The recombinant lichenase overexpressed and purified from Escherichia coli was able to efficiently hydrolyze both barley ${\beta}$-glucan and lichenan. The enzyme showed maximal activity at a pH of 6.0 at $50^{\circ}C$, with Azo-barley-glucan as the substrate. The metal ions $Mn^{2+}$, $Mg^{2+}$, $Ca^{2+}$, and $Fe^{2+}$ enhanced the enzymatic activity, whereas the $Cu^{2+}$ and $Zn^{2+}$ ions inhibited the enzymatic activity. The $K_m$ and $V_{max}$ values of the purified lichenase were determined to be 0.45 mg/ml and 24.83 U/min/mg of protein, respectively.

Cloning, Expression, Purification, and Properties of an Endoglucanase Gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris

  • Pham, Thi Hoa;Quyen, Dinh Thi;Nghiem, Ngoc Minh;Vu, Thu Doan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1012-1020
    • /
    • 2011
  • A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of ${\beta}$-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of $55^{\circ}C$ and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of $30-37^{\circ}C$ and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants ($K_m$, $V_{max}$, $k_{cat}$, and $k_{cat}/K_m$) determined for rEglA with ${\beta}$-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 $min^{-1}$, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 $min^{-1}$, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward ${\beta}$-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme.

Molecular Cloning and Sequence Analysis of Coelomic Cytolytic Factor-like Gene from the Midgut of the Earthworm, Eisenia Andrei (줄지렁이 중장에서 분리한 Coelomic cytolytic factor-유사 유전자의 클로닝 및 염기서열 분석에 관한 연구)

  • Baek, Nam Sook;Lee, Myung-Sik;Park, Sang-Kil;Kim, Dae-hwan;Tak, Eun-Sik;Ahn, Chi-Hyun;Sun, Zhenjun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.64-73
    • /
    • 2008
  • The cDNA of CCF (coelomic cytolytic factor)-like gene (EC 3.2.1.16), a kind of glycosyl hydorlase, was isolated and cloned from the midgut of the earthworm Eisenia anderi. The size of nucleotide sequence appeared to be 1,152 bp and its predicted coding region was composed of 384 amino acid residues including the initiation methionine. The 17 residues at N-terminal end in the deduced amino acid sequence were regarded to be a signal peptide. Based on the amino acid sequence analysis, it appeared that this CCF-like protein could belong to glycosyl hydrolase family 16 (GHF16) and showed a high sequence homology of about 79~99% with CCF and CCF-like proteins from other earthworm species. The CCFs and CCF-like proteins from various earthworm species exhibited a 100% homology in the polysacchride-binding motif and glucanase motif. It has been reported that the CCFs isolated from E. fedita appeared to show a broader pattern recognition specificity than those from other earthworm species because this species resides in decaying organic matter showing very high microbial activity, implying that CCF-like protein isolated in this study from E. andrei might exhibit a broad substrate specificity that is a useful characteristic for industrial application. A phylogenetic analysis using the deduced amino acid sequences of CCF-related proteins through the BLASTX revealed that GHF16 families could be divided into three groups of metazoa, viriplantae and eubacteria subfamily. Subsequently the CCF-related proteins of metazoa subfamily could clearly be subgroup into lophotrochozoan and edysozoan type including a deuterostome origin. Further understanding of the biological properties of E. andrei CCF-like protein should be addressed to regulate the ${\beta}$-D-glucan hydrolysis and production for the industrial uses.

  • PDF

Cloning of a Bacillus subtilis WL-7 Mannanase Gene and Characterization of the Gene Product

  • KWEUN , MIN-A;LEE, MI-SUNG;CHOI, JOON-HO;CHO, KI-HAENG;YOON, KI-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1295-1302
    • /
    • 2004
  • A gene encoding the mannanase of Bacillus subtilis WL-7, which had been isolated from Korean soybean paste, was cloned into Escherichia coli, and the gene product was purified from the culture filtrate of the recombinant E. coli. This mannanase gene, designated manA, consisted of 1,086 nucleotides, encoding a polypeptide of 362 amino acid residues. The deduced amino acid sequence was highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. The enzyme had a pH optimum at 6.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum, konjak, guar gum, and lichenan, while it did not exhibit activity towards yeast mannan, laminarin, carboxymethylcellulose, $\beta$­glucan, xylan, and para-nitrophenyl-$\beta$-mannopyranoside.

Synergistic Inhibition of IgY, Auricularia auricula, and Lactic Acid Bacteria from Kimchi and Tarak on Helicobacter pylori (Helicobacter pylori 의 생육억제에 대한 유산균, 난황항체 및 목이버섯의 상승효과)

  • Yoo, Hye-Lim;Lee, Young-Duck;Han, Bok-Kyung;Choi, Hyuk-Joon;Park, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The substances of lactic acid bacteria (LAB) isolated feom Kimchi and Tarak, L. mesenteriodes LAB kw5, and S. thermophilus LAB KW15 were investigated for growth effect of Helicobacter pylori with IgY and Auricularia auricula. Inhibition of H. pylori was confirmed at LAB KW5 and KW15 supernatants. Interestingly, anti-H. pylori substance in LAB KW5 and KW15 supernatants were sensitive to lipase, but insensitive to protein hydrolase and carbohydrate hydrolase. The inhibition zone toward H. pylori was not shown with the lipase-treated supernatants. Therefore, there seemed to be lipid-like substances in the cultures. By the analyses with gas chromatography, undecanoic acid ($C_{11:0}$), palmitic acid ($C_{16:0}$), stearic acid ($C_{18:0}$), and oleic acid ($C_{18:1}$) were detected at the culture substances from L. mesenteroides LAB KW5 and S. thermophilus LAB KW15, and more eicosadienoic acid ($C_{20:2}$) from L. mesenteroides LAB KW5. Anti-H. pylori substances of LAB with IgY and A. auricula extract were analyzed for inhibition effect of H. pylori. The inhibition increased more by the range from 57% to 86% by the mixture. The substances with IgY and A. auricula extract showed more effective inhibition of H. pylori than single or double trials.

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.