• Title/Summary/Keyword: Global localization

Search Result 286, Processing Time 0.026 seconds

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

A Study on the Localization in Vietnam of Mobile Games (모바일 게임의 베트남 현지화 방안에 관한 연구)

  • Jung, Suah;Kim, Hongyoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.97-106
    • /
    • 2016
  • This study analyzes on localization plans to successfully enter ASEAN market more rapidly growing than over-saturated the Asian or North American mobile game markets based on the Vietnamese market. Vietnamese smartphone market is the fastest growing in ASEAN based on its young aged population of average 28.2 year-old and low 3G service charges. Considering one of the most common activities through smartphones is the mobile game, the smartphone demand increase can be forecasted to be based on the growth of Vietnamese game market. Global strategies for exporting products to the global market can be classified into 'standardization' and 'localization'. From among these, Korean game companies are making profits by localization plan. But the Vietnamese mobile game market still has entry barriers. Therefore, this study is to contribute to Korean mobile game companies' localization plans for the Vietnamese market by finding and supplementing limits of the Vietnamese mobile game market based on literatures and statistics materials.

Global Ultrasonic Sensor System for Self-localization of an Indoor Mobile Robot (실내용 이동 로봇의 자기 위치 추정을 위한 전역 초음파 센서 시스템)

  • Jin, Jae-Ho;Yi, Soo-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2421-2423
    • /
    • 2002
  • A global ultrasonic sensor system for self-localization of an indoor mobile robot is proposed in this paper. By the global ultrasonic sensor system, it is meant several ultrasonic transmitters fixed at some positions in the world coordinate and the receiver in the moving coordinate of a mobile robot. In order to achieve the synchronization between an ultrasonic transmitter and receiver and to avoid the crosstalk among the ultrasonic transmitters, simple radio frequency transmitters and receivers are adopted. Experiments are carried out to verify the effectiveness of the proposed ultrasonic sensor system.

  • PDF

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

Development of Localization and Pose Compensation for Mobile Robot using Magnetic Landmarks (마그네틱 랜드마크를 이용한 모바일 로봇의 위치 인식 및 위치 보정 기술의 개발)

  • Kim, Bum-Soo;Choi, Byung-June;You, Won-Suk;Moon, Hyung-Pil;Koo, Ja-Choon;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.186-196
    • /
    • 2010
  • In this paper, we present a global localization and position error compensation method in a known indoor environment using magnet hall sensors. In previous our researches, it was possible to compensate the pose errors of $x_e$, $y_e$, ${\theta}_e$ correctly on the surface of indoor environment with magnets sets by regularly arrange the magnets sets of identical pattern. To improve the proposed method, new strategy that can realize the global localization by changing arrangement of magnet pole is presented in this paper. Total six patterns of the magnets set form the unique landmarks. Therefore, the virtual map can be built by using the six landmarks randomly. The robots search a pattern of magnets set by rotating, and obtain the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. We provide experimental results to show the effectiveness of the proposed method for a differential drive wheeled mobile robot.

Global Localization of Mobile Robots Using Omni-directional Images (전방위 영상을 이용한 이동 로봇의 전역 위치 인식)

  • Han, Woo-Sup;Min, Seung-Ki;Roh, Kyung-Shik;Yoon, Suk-June
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.517-524
    • /
    • 2007
  • This paper presents a global localization method using circular correlation of an omni-directional image. The localization of a mobile robot, especially in indoor conditions, is a key component in the development of useful service robots. Though stereo vision is widely used for localization, its performance is limited due to computational complexity and its narrow view angle. To compensate for these shortcomings, we utilize a single omni-directional camera which can capture instantaneous $360^{\circ}$ panoramic images around a robot. Nodes around a robot are extracted by the correlation coefficients of CHL (Circular Horizontal Line) between the landmark and the current captured image. After finding possible near nodes, the robot moves to the nearest node based on the correlation values and the positions of these nodes. To accelerate computation, correlation values are calculated based on Fast Fourier Transforms. Experimental results and performance in a real home environment have shown the feasibility of the method.

Landmark based Localization System of Mobile Robots Considering Blind Spots (사각지대를 고려한 이동로봇의 인공표식기반 위치추정시스템)

  • Heo, Dong-Hyeog;Park, Tae-Hyoung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.156-164
    • /
    • 2011
  • This paper propose a localization system of indoor mobile robots. The localization system includes camera and artificial landmarks for global positioning, and encoders and gyro sensors for local positioning. The Kalman filter is applied to take into account the stochastic errors of all sensors. Also we develop a dead reckoning system to estimate the global position when the robot moves the blind spots where it cannot see artificial landmarks, The learning engine using modular networks is designed to improve the performance of the dead reckoning system. Experimental results are then presented to verify the usefulness of the proposed localization system.

Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen;Torres-Arredondo, Miguel Angel;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.229-251
    • /
    • 2012
  • Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Autonomous Ground Vehicle Localization Filter Design Using Landmarks with Non-Unique Features (비고유 특징을 갖는 의미정보를 이용한 지상 자율이동체 측위 기법)

  • Kim, Chan-Yeong;Hong, Daniel;Ra, Won-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1486-1495
    • /
    • 2018
  • This paper investigates the autonomous ground vehicle (AGV) localization filter design problem under GNSS-denied environments. It is assumed that the given landmarks do not have unique features due to the lack of a prior knowledge on them. For such case, the AGV may have difficulties in distinguishing the position measurement of the detected landmark from those of other landmarks with the same feature, hence the conventional localization filters are not applicable. To resolve this technical issue, the localization filter design problem is formulated as a special form of the data association determining whether the detected feature is actually originated from which landmark. The measurement hypotheses generated by landmarks with the same feature are evaluated by the nearest neighbor data association scheme to reduce the computational burden. The position measurement corresponding to the landmark with the most probable hypothesis is used for localization filter. Through the experiments in real-driving condition, it is shown that the proposed method provides satisfactory localization performance in spite of using non-unique landmarks.