• Title/Summary/Keyword: Global existence

Search Result 310, Processing Time 0.038 seconds

A HOPF BIFURCATION IN AN ATTRACTION-ATTRACTION CHEMOTAXIS SYSTEM WITH GLOBAL COUPLING

  • YoonMee Ham
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • We consider a bistable attraction-attraction chemotaxis system with global coupling term. The study in this paper asserts that conditions for chemotactic coefficients for attraction and attraction and the global coupling constant to show existence of stationary solutions and Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.

[ W12 ]-ESTIMATES ON THE PREY-PREDATOR SYSTEMS WITH CROSS-DIFFUSIONS AND FUNCTIONAL RESPONSES

  • Shim, Seong-A
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.211-227
    • /
    • 2008
  • As a mathematical model proposed to understand the behaviors of interacting species, cross-diffusion systems with functional responses of prey-predator type are considered. In order to obtain $W^{1_2}$-estimates of the solutions, we make use of several forms of calculus inequalities and embedding theorems. We consider the quasilinear parabolic systems with the cross-diffusion terms, and without the self-diffusion terms because of the simplicity of computations. As the main result we derive the uniform $W^{1_2}$-bound of the solutions and obtain the global existence in time.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.