• Title/Summary/Keyword: Global cycle

Search Result 731, Processing Time 0.029 seconds

Effect of addition of As-received IGCC slag in making geopolymer

  • Kim, Yootaek;Chae, Taesung
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.378-382
    • /
    • 2018
  • It is a known fact that the cement production is responsible for almost 5% of total worldwide $CO_2$ emission, the primary factor affecting global warming. Geopolymers are valuable as ordinary Portland cement (OPC) substitutes because geopolymers release 80% less $CO_2$ than OPC and have mechanical properties sufficiently similar to those of OPC. Therefore, geopolymers have proven attractive to eco-friendly construction industries. Geopolymers can be fabricated from aluminum silicate materials with alkali activators such as fly ash, blast furnace slag, and so on. Integrated gasification combined cycle (IGCC) slag has been used for fabricating geopolymers. In general, IGCC slag geopolymers are fabricated with finely ground and sieved (<128 mesh) IGCC slag. The grinding process of as-received IGCC slag is one of the main costs in geopolymer production. Therefore, the idea of using as-received IGCC slag (before grinding the IGCC slag) as aggregates in the geopolymer matrix was introduced to reduce production cost as well as to enhance compressive strength. As-received IGCC slag (0, 10, 20, 30, 40 wt%) was added in the geopolymer mixing process and the mixtures were compared. The compressive strength of geopolymers with an addition of 10 wt% as-received IGCC slag increased by 19.84% compared to that with no additional as-received IGCC slag and reached up to 41.20 MPa. The enhancement of compressive strength is caused by as-received IGCC slag acting as aggregates in the geopolymer matrix like aggregates in concrete. The density of geopolymers slightly increased to $2.1-2.2g/cm^3$ with increasing slag addition. Therefore, it is concluded that a small addition of as-received IGCC slag into the geopolymer can increase compressive strength and decrease the total cost of the product. Moreover, the direct use of as-received IGCC slag may contribute to environment protection by reducing process time and $CO_2$ emission.

A Business Cluster of IT Enterprise (IT기업의 비즈니스클러스터)

  • Park, Jae-Sue;Park, Jung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1558-1564
    • /
    • 2019
  • Corporate business clusters create a borderless business network through value chains and value creation activities. Clusters in the IT sector are crossing regional boundaries because of their rapid technological development and short product life cycle. To investigate this phenomenon, we examined the value activities of IT companies. As a result, the global expansion of the case companies was limited, but they had business clusters that exceeded the regional boundaries. However, because the order of business clusters is not advanced, value activities are focused on productivity rather than innovation. Given the rapidly evolving nature of IT, it is necessary to evolve into a business cluster that can create new value. Companies must design and implement value-creating processes to develop new technologies or enter new markets, which can lead to cluster growth. Companies must design and implement value-creating processes to develop new technologies or enter new markets, which can lead to cluster growth.

The development of nurses' core competencies and the analysis of validity and importance-performance (간호사 핵심역량 개발 및 타당도와 중요도 대비 수행도 분석)

  • Seomun, GyeongAe;Bang, Kyung-Sook;Kim, Hee Sook;Yoo, Cheong Sook;Kim, Woon Kyung;Park, Jin Kyung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.1
    • /
    • pp.16-28
    • /
    • 2021
  • Purpose: The purpose of this study was to develop nurses' core competencies and sub-competencies and to verify the validity and importance-performance of core competencies. Methods: The core competencies of nurses were derived through an analysis of strengths, weaknesses, opportunities, and threats, as well as a literature analysis of domestic and foreign accreditation institutions. Validity and importance-performance analyses were conducted on the core competencies derived from nursing colleges nationwide. Results: Six core competencies of nurses were revealed: integration of knowledge and nursing skills, critical thinking, communication, leadership, safety management, and global competency. Further, eighteen sub-competencies were derived. The content validity ratio values for the core competencies were higher than 0.74. Communication skills among multidisciplinary teams and communication skills among nursing teams were shown to be the most important competencies to be improved. Conclusion: The results of this study are meaningful in terms of how the core competencies of nurses were derived and evaluated for the fourth cycle of nursing education accreditation according to the changes of time and culture.

Analysis of differences in K-pop Content Update Preference Cycle and Price Elasticity

  • Kwak, Youngsik;Lee, Yunkyung;Na, Byeongmin;Hong, Jaewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.137-144
    • /
    • 2022
  • This study is an empirical study on whether the interval of K-pop content updates and price changes consumer purchasing intentions for domestic fandom commerce platforms that turn their profit structure online and strengthen fandom-based marketing to cope with changes in the digital environment. FGI and a survey was conducted using a conjoint analysis designed to confirm the difference in price elasticity according to the content update interval. As a result, the price elasticity of K-pop content was found to be an inelastic characteristic, and the change in price elasticity according to the content update interval was not statistically significant. This study provides basic data to be used to establish a marketing strategy for the fandom commerce market that will grow in the future.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Biogeochemical Cycles during the mid-Cretaceous Oceanic Anoxic Event 2 (백악기 중기 해양 무산소 사건 2 동안의 생지화학적 순환)

  • Joo, Young Ji
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.569-578
    • /
    • 2022
  • Oceanic Anoxic Event 2 (OAE2) represents a period of mid-Cretaceous when black shale was deposited worldwide. This short period of perturbations in the global biogeochemical cycles spans the Cenomanian-Turonian boundary, marking the peak of the Cretaceous greenhouse, which is characterized by elevated atmospheric pCO2, sealevel highstand, and expansion of oxygen minimum zone. Since the pioneering work in the 1970s, numerous studies have investigated the cause and consequences of the event based on geochemical and isotope proxies, and it is now widely accepted that the enhanced primary production and volcanism during the Cenomanian-Turonian boundary interval were the key environmental factors that triggered OAE2. This study briefly reviews previous OAE2 studies of the carbon, sulfur, and trace metal cycles for mechanistic understanding of the biogeochemical processes during the event.

GDP Linked Bonds and Currency Risk Premiums (GDP 연계채권과 환리스크 프리미엄)

  • Sohn, Kyoung-woo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.3
    • /
    • pp.379-396
    • /
    • 2021
  • Purpose - The purpose of this paper is to study the rational payoff from the standpoint of foreign investors and the government when the government issues GDP-linked bonds to foreign investors. Design/methodology/approach - In this paper, the prices of 12 types of GDP-linked bond structures, which are classified according to the calculation cycle of the rate of change of linked GDP, the currency issued, and whether options are embedded, were evaluated. The Fama-French 3-factor model and the GMM-SDF model are used in the asset pricing model, and domestic and overseas investors used different basis assets. Findings - The KRW premium for US investors is estimated to be 43bp on a quarterly basis and 30bp on an annual basis, respectively, meaning that when the government issues bonds in KRW, the interest rate paid to US investors will be reduced by 30bp to 160bp (annually converted). Using the Fama-French 3 factor model, the KRW premium is the risk premium for the US market beta, meaning that if US investors do not intend to invest in US market beta, it is advantageous to receive an additional interest rate by investing in USD-denominated GDP-linked bonds. Korea's GDP- linked bond give US investors diversified investment utility, so they are willing to incorporate Korean GDP-linked bonds even if -150bp of interest is deducted from the structure issued to Korean investors. And as a result of estimating the value of the option through the GDP-linked bond with options that provides a floor for guaranteeing the principal, the value of the option linked to the annual GDP issued in dollars was the lowest. Research implications or Originality - Issuing dollar-denominated GDP-linked bonds linked to annual GDP with the option of guaranteeing the principal by the government is a way to increase investment opportunities for US investors and achieve financial stability of the government.

Management Plan for Rural Groundwater Resources in the Era of Post COVID-19 (포스트 코로나 시대 농어촌지하수 관리 방안)

  • Lee, Byung Sun;Seo, Sangjin;Lee, Gyusang;Yoon, Seok-Hwan;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • This study was conducted to supplement new-normal strategies on management plans of rural groundwater resources in the era of Post COVID-19. Global outbreak of COVID-19 has damaged across all areas including public policy, economics, industrial services, and others without exception, which has resulted in establishing new-normal strategies in order to restore balance and functions as for these areas. The new-normal ones were represented as enhancing preventative management on infectious diseases, expanding non face-to-face services, enhancing protective trades and food securities, and preparing growth policies on public services using the 4th industrial revolution techniques. In this study, G-WASH_AD (Groundwater supply, sanitation, and hygiene with attraction and digitization) was suggested to be new-normal strategies on rural groundwater resources. The G-WASH_AD was consisted of three detailed action plans: a preventative plan on waterborne-diseases of groundwater (PP), a groundwater-tourism plan with rural heritage (GP), and an application plan of the 4th industrial revolution techniques to groundwater facilities and its data (P4). The PP can contribute to protect human health from waterborne-diseases and minimize hazardous effects on crop cultivation. The GP accompanied with high-quality groundwater resources is able to strengthen rural tourism, to promote marketing activities on local agricultural products, and to increase household incomes of rural communities. The P4 can reinforce fast, comfortable, and scientific management on groundwater facilities and its data, creating a virtuous cycle between innovative management on groundwater and growth of technology related to it. Results of the G-WASH_AD strategies can encourage a green growth engine in field of rural groundwater management keeping up with Post COVID-19.

Design and Analysis of a Novel Methanol SOFC Combined System for Marine Applications Toward Future Green Shipping Goals

  • Duong Phan Anh;Ryu Bo Rim;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.106-119
    • /
    • 2023
  • Due to global decarbonization movement and tightening of maritime emissions restrictions, the shipping industry is going to switch to alternative fuels. Among candidates of alternative fuel, methanol is promising for decreasing SOx and CO2 emissions, resulting in minimum climate change and meeting the goal of green shipping. In this study, a novel combined system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbine (GT), and organic Rankine cycle (ORC) targeted for marine vessels was proposed. The SOFC is the main power generator of the system, whereas the GT and PEMFC could recover waste heat from the SOFC to generate useful power and increase waste heat utilizing efficiency of the system. Thermodynamics model of the combined system and each component were established and analyzed. Energy and exergy efficiencies of subsystems and the entire system were estimated with participation of the first and second laws of thermodynamics. The energy and exergy efficiencies of the overall multigeneration system were estimated to be 76.2% and 30.3%, respectively. The combination of GT and PEMFC increased the energy efficiency by 18.91% compared to the SOFC stand-alone system. By changing the methanol distribution ratio from 0.05 to 0.4, energy and exergy efficiencies decreased by 15.49% and 5.41%, respectively. During the starting up and maneuvering period of vessels, a quick response from the power supply system and propulsion plant is necessary. Utilization of PEMFC coupled with SOFC has remarkable meaning and benefits.

Self-diagnosis Algorithm for Water Quality Sensors Based on Water Quality Monitoring Data (수질 모니터링 데이터 기반의 수질센서 자가진단 알고리즘)

  • HongJoong Kim;Jong-Min Kim;Tae-Hyung Kang;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Today, due to the increase in global population growth, the international community is discussing solving the food problem. The aquaculture industry is emerging as an alternative to solving the food problem. For the innovative growth of the aquaculture industry, smart fish farms that combine the fourth industrial technology are recently being distributed, and full-cycle digitalization is being promoted. Water quality sensors, which are important in the aquaculture industry, are electrochemical portable sensors that check water quality individually and intermittently, making it impossible to analyze and manage water quality in real time. Recently, optically-based monitoring sensors have been developed and applied, but the reliability of monitoring data cannot be guaranteed because the state information of the water quality sensor is unknown. Therefore, this paper proposes an algorithm representing self-diagnosis status such as Failure, Out of Specification, Maintenance Required, and Check Function based on monitoring data collected by water quality sensors to ensure data reliability.