Acknowledgement
이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었다. 또한 지구과학회지 편집위원 및 두 분의 심사위원의 세심한 조언에 감사드린다.
References
- Adams, D.D., Hurtgen, M.T., Sageman, B.B., 2010, Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2. Nature Geoscience, 3, 201-204. https://doi.org/10.1038/ngeo743
- Algeo, T.J., 2004, Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32, 1057-1060. https://doi.org/10.1130/G20896.1
- Ando, A., Nakano, T., Kaiho, K., Kobayashi, T., Kokado, E., Khim, B.-K., 2009, Onset of seawater 87Sr/86Sr excursion prior to Cenomanian-Turonian oceanic anoxic event 2? New Late Cretaceous strontium isotope curve from the central Pacific Ocean. Journal of Foraminiferal Research, 39, 322-334. https://doi.org/10.2113/gsjfr.39.4.322
- Arthur, M.A., Dean, W.E., Schlanger, S.O., 1985. Variations in the Global Carbon Cycle During the Cretaceous Related to Climate, Volcanism, and Changes in Atmospheric CO2, In Sundquist, E., Broecker, W. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 504-529.
- Barclay, R.S., McElwain, J.C., Sageman, B.B., 2010, Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3, 205-208. https://doi.org/10.1038/ngeo757
- Bellenger, J.-P., Wichard, T., Xu, Y., Kraepiel, A.M.L., 2011, Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology, 13, 1395-1411. https://doi.org/10.1111/j.1462-2920.2011.02440.x
- Berner, R.A., Raiswell, R., 1983, Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855-862. https://doi.org/10.1016/0016-7037(83)90151-5
- Brumsack, H.-J., 2006, The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361. https://doi.org/10.1016/j.palaeo.2005.05.011
- Caraco, N., Cole, J., Likens, G., 1989, Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature, 341, 316-318. https://doi.org/10.1038/341316a0
- Caraco, N.F., Cole, J.J., Likens, G.E., 1993, Sulfate control of phosphorus availability in lakes. Hydrobiologia, 253, 275-280. https://doi.org/10.1007/BF00050748
- Demaison, G.J., Moore, G.T., 1980, Anoxic environments and oil source bed genesis. AAPG Bulletin, 64, 1179-1209.
- Du Vivier, A.D.C., Selby, D., Sageman, B.B., Jarvis, I., Grocke, D.R., Voigt, S., 2014, Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389, 23-33. https://doi.org/10.1016/j.epsl.2013.12.024
- Forster, A., Schouten, S., Moriya, K., Wilson, P.A., Sinninghe Damste, J.S., 2007, Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22, PA1219.
- Friedrich, O., Erbacher, J., Moriya, K., Wilson, P.A., Kuhnert, H., 2008. Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nature Geoscience 1, 453-457. https://doi.org/10.1038/ngeo217
- Gomes, M.L., Hurtgen, M.T., Sageman, B.B., 2016, Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleoceanography, 31, 233-251. https://doi.org/10.1002/2015PA002869
- Grasby, S.E., Them, T.R., Chen, Z., Yin, R., Ardakani, O.H., 2019, Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 196, 102880. https://doi.org/10.1016/j.earscirev.2019.102880
- Haq, B.U., 2014, Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58. https://doi.org/10.1016/j.gloplacha.2013.12.007
- Hetzel, A., Bottcher, M.E., Wortmann, U.G., Brumsack, H.-J., 2009, Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302-328. https://doi.org/10.1016/j.palaeo.2008.11.005
- Hong, S.K., Lee, Y.I., 2012, Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth and Planetary Science Letters, 327-328, 23-28. https://doi.org/10.1016/j.epsl.2012.01.014
- Huber, B.T., Norris, R.D., MacLeod, K.G., 2002, Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30, 123-126.
- Ingall, E.D., Bustin, R., Van Cappellen, P., 1993, Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303-316. https://doi.org/10.1016/0016-7037(93)90433-W
- Jarvis, I.A.N., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006, Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine, 143, 561-608. https://doi.org/10.1017/S0016756806002421
- Jenkyns, H.C., 2010, Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004 https://doi.org/10.1029/2009GC002788
- Jenkyns, H.C., Gale, A.S., Corfield, R.M., 1994, Carbonand oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1-34. https://doi.org/10.1017/S0016756800010451
- Jenkyns, H.C., Matthews, A., Tsikos, H., Erel, Y., 2007, Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22, PA3208.
- Jones, C.E., Jenkyns, H.C., 2001, Seawater Strontium Isotopes, Oceanic Anoxic Events, and Seafloor Hydrothermal Activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112-149. https://doi.org/10.2475/ajs.301.2.112
- Joo, Y.J., Sageman, B.B., 2014, Cenomanian To Campanian Carbon Isotope Chemostratigraphy from the Western Interior Basin, U.S. Journal of Sedimentary Research, 84, 529-542. https://doi.org/10.2110/jsr.2014.38
- Joo, Y. J., B. B. Sageman, and M. T. Hurtgen, 2020, Datamodel comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2. Earth-Science Reviews, 203, 103123. https://doi.org/10.1016/j.earscirev.2020.103123
- Keeling, C.., Piper, S.C., Bacastow, R.B., Wahlen, M, Whorf, T.P., Heimann, M., and Meijer, H.A., 2001, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 p.
- Kerr, A.C., 1998, Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, 155, 619-626. https://doi.org/10.1144/gsjgs.155.4.0619
- Kolonic, S., 2004, Mechanism and biochemical implication of Cenomanian-Turonian black shale formation in north Africa: an integrated geochemical millennial-scale study from the Tarfaya-Laayoune Basin in SW Morocco. Berichte Fachbereich Geowissenschaften, 174.
- Kuroda, J., Ogawa, N., Tanimizu, M., Coffin, M., Tokuyama, H., Kitazato, H., Ohkouchi, N., 2007, Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256, 211-223. https://doi.org/10.1016/j.epsl.2007.01.027
- Lowenstein, T.K., Hardie, L.A., Timofeeff, M.N., Demicco, R.V., 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31, 857-860.
- MacLeod, K.G., Huber, B.T., Berrocoso, A.J., Wendler, I., 2013, A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera. Geology, 41, 1083-1086.
- MacLeod, K.G., Martin, E.E., Blair, S.W., 2008, Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology, 36, 811-814. https://doi.org/10.1130/G24999A.1
- Meyers, S.R., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J., Obradovich, J.D., Jicha, B.R., Sawyer, D.A., 2012, Intercalibration of radioisotopic and astrochronologic time scales for the CenomanianTuronian boundary interval, Western Interior Basin, USA. Geology, 40, 7-10.
- Mort, H.P., Adatte, T., Follmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z., Stuben, D., 2007, Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 35, 483-486.
- Murray, T.E., 1995, The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1190-1194. https://doi.org/10.1139/f95-115
- Nederbragt, A.J., Thurow, J., Vonhof, H., Brumsack, H.-J., 2004, Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2). Journal of the Geological Society, 161, 721-728. https://doi.org/10.1144/0016-764903-075
- Neubert, N., Nagler, T.F., Bottcher, M.E., 2008, Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36, 775-778. https://doi.org/10.1130/G24959A.1
- Ogg, J.G., Hinnov, L.A., Huang, C., 2012, Chapter 27: Cretaceous, In Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds.), The Geologic Time Scale, 793-853.
- Orth, C.J., Attrep, M., Quintana, L.R., Elder, W.P., Kauffman, E.G., Diner, R., Villamil, T., 1993, Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source(s). Earth and Planetary Science Letters, 117, 189-204. https://doi.org/10.1016/0012-821X(93)90126-T
- Owens, J.D., Reinhard, C.T., Rohrssen, M., Love, G.D., Lyons, T.W., 2016, Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle. Earth and Planetary Science Letters, 449, 407-417. https://doi.org/10.1016/j.epsl.2016.05.046
- Owens, J.D., Gill, B.C., Jenkyns, H.C., Bates, S.M., Severmann, S., Kuypers, M.M.M., Woodfine, R.G., Lyons, T.W., 2013, Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 110, 18407-18412. https://doi.org/10.1073/pnas.1305304110
- Owens, J.D., Lyons, T.W., Li, X., Macleod, K.G., Gordon, G., Kuypers, M.M.M., Anbar, A., Kuhnt, W., Severmann, S., 2012, Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography, 27, PA3223.
- Palmer, M.R., Edmond, J.M., 1989, The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92, 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
- Pedersen, T.F., Calvert, S.E., 1990, Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary Rocks? AAPG Bulletin, 74, 454-466.
- Percival, L.M.E., Jenkyns, H.C., Mather, T.A., Dickson, A.J., Batenburg, S.J., Ruhl, M., Hesselbo, S.P., Barclay, R., Jarvis, I., Robinson, S.A., Woelders, L., 2018, Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. American Journal of Science, 318, 799-860. https://doi.org/10.2475/08.2018.01
- Pogge von Strandmann, P.A.E., Jenkyns, H.C., Woodfine, R.G., 2013, Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668-672. https://doi.org/10.1038/ngeo1875
- Pratt, L.M., 1985. Isotopic studies of organic matter and carbonate in rocks of the Greenhorn marine cycle, In Pratt, L.M., Kauffman, E.G., Zelt, F.B. (eds.), FineGrained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes, 38-48.
- Raven, M.R., Keil, R.G., Webb, S.M., 2021, Microbial sulfate reduction and organic sulfur formation in sinking marine particles. Science, 371, 178. https://doi.org/10.1126/science.abc6035
- Raven, M.R., Sessions, A.L., Fischer, W.W., Adkins, J.F., 2016, Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120-134. https://doi.org/10.1016/j.gca.2016.04.037
- Sageman, B.B., Meyers, S.R., Arthur, M.A., 2006, Orbital time scale and new C-isotope record for CenomanianTuronian boundary stratotype. Geology, 34. 125-128. https://doi.org/10.1130/G22074.1
- Sageman, B.B., Singer, B.S., Meyers, S.R., Siewert, S.E., Walaszczyk, I., Condon, D.J., Jicha, B.R., Obradovich, J.D., Sawyer, D.A., 2014, Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA. Geological Society of America Bulletin, 126, 956-973. https://doi.org/10.1130/B30929.1
- Scaife, J.D., Ruhl, M., Dickson, A.J., Mather, T.A., Jenkyns, H.C., Percival, L.M.E., Hesselbo, S.P., Cartwright, J., Eldrett, J.S., Bergman, S.C., Minisini, D., 2017, Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous). Geochemistry, Geophysics, Geosystems, 18, 4253-4275. https://doi.org/10.1002/2017GC007153
- Schlanger, S.O., Jenkyns, H.C., 1976, Cretaceous Oceanic Anoxic Events: Causes and Consequences. Geologie En Mijnbouw, 55, 179-184.
- Scott, C., Lyons, T.W., 2012, Contrasting molybdenum cycling and isotopic properties in euxinic versus noneuxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324-325, 19-27. https://doi.org/10.1016/j.chemgeo.2012.05.012
- Sinton, C.W., Duncan, R.A., 1997, Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92, 836-842. https://doi.org/10.2113/gsecongeo.92.7-8.836
- Snow, L.J., Duncan, R.A., Bralower, T.J., 2005, Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20, PA3005.
- Stoll, H.M., Schrag, D.P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? GSA Bulletin 112, 308-319. https://doi.org/10.1130/0016-7606(2000)112<308:HSIRFT>2.0.CO;2
- Takashima, R., Nishi, H., Huber, B.T., Leckie, R.M., 2006. Greenhouse world and the Mesozoic ocean. Oceanography, 19, 82-92. https://doi.org/10.5670/oceanog.2006.07
- Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N., Mochizuki, S., 2010, High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific. Earth and Planetary Science Letters, 289, 570-582. https://doi.org/10.1016/j.epsl.2009.11.058
- Tsikos, H., Karakitsios, V., Van Breugel, Y., WalsworthBell, B.E.N., Bombardiere, L., Petrizzo, M.R., Sinninghe Damste, J.S., Schouten, S., Erba, E., Silva, I.P., Farrimond, P., Tyson, R.V., Jenkyns, H.C., 2004, Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW Greece: the Paquier Event (OAE 1b) revisited. Geological Magazine, 141, 401-416. https://doi.org/10.1017/S0016756804009409
- Turgeon, S.C., Creaser, R.A., 2008, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323. https://doi.org/10.1038/nature07076
- Van Cappellen, P., Ingall, E.D., 1996, Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity. Science, 271, 493-496. https://doi.org/10.1126/science.271.5248.493
- Wortmann, U.G., Chernyavsky, B.M., 2007, Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling. Nature, 446, 654-656. https://doi.org/10.1038/nature05693
- Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J., Henderson, G.M., 2013, Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth and Planetary Science Letters, 375, 338-348. https://doi.org/10.1016/j.epsl.2013.05.053
- Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J., Henderson, G.M., 2016, A climatic control on reorganization of ocean circulation during the midCenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology, 44, 151-154.