• Title/Summary/Keyword: Global curvature

Search Result 69, Processing Time 0.024 seconds

Analysis of Specific Problems in Laser Scanning Optical System Design

  • Joo, Won-Don
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • We analyze aberrations in an optical laser printer system in order to know how to determine an allowable non-uniformity of the movement of a light spot, how to determine allowed variation of spot sizes, and how to minimize the influence of these deviations on technological errors. In this paper, the correction and the tolerance of distortion are analyzed by using the concept of zonal and global distortions. The tolerance of field curvature is also obtained from Gaussian beam properties. In order to reduce the change of the entrance pupil position and to make a more compact laser printer system the minimum size of the rotator is exactly derived from the geometry with the introduction of the shift angle of the input beam.

GLOBAL THEORY OF VERTICAL RECURRENT FINSLER CONNECTION

  • Soleiman, Amr
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.593-607
    • /
    • 2021
  • The aim of the present paper is to establish an intrinsic generalization of Cartan connection in Finsler geometry. This connection is called the vertical recurrent Finsler connection. An intrinsic proof of the existence and uniqueness theorem for such connection is investigated. Moreover, it is shown that for such connection, the associated semi-spray coincides with the canonical spray and the associated nonlinear connection coincides with the Barthel connection. Explicit intrinsic expression relating this connection and Cartan connection is deduced. We also investigate some applications concerning the fundamental geometric objects associated with this connection. Finally, three important results concerning the curvature tensors associated to a special vertical recurrent Finsler connection are studied.

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman;Salah Gomaa Elgendi
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

Development of GSCAD Template Rule for Hull Plate Forming (GSCAD를 이용한 Template 기능 개발 및 적용)

  • Yoon, Jong-Sung;Park, Ji-Hyun;Myoung, Hee-Keon;SaKong, Gae-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.32-35
    • /
    • 2011
  • Template has been widely used for hull forming process in most of shipyards. It is used to estimate the curvature of deformed shape in comparison with design shape. SHI (Samsung Heavy Industry) had used AutoKon system for ship manufacturing design in the past. The AutoKon used the global coordinate system of ship (frame, water line and so on) to create template data. It brought the mismatched angles between templates and a curved shell plate. The mismatched angle is measured by forming worker to place template on shell forming stage. However, the mismatched angle is difficult to place template with exactly required angle because the shell plates have various curvature and size. It causes incorrect shape of formed shell plates. The attached angle of template should be 90 degree to place template easily on forming shell plates. Currently, SHI has been applied GSCAD for ship manufacturing design process which is 3D solid modeling system. The GSCAD is the rule-based system which can automate 3D modeling and control the manufacturing data by rule. The rule can easily provide methods to create and automate template object with regular attached angle in comparison with AutoKon system. Therefore, SHI developed new template rule which it can automatically create template object with regular attached angle in GSCAD.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Free Vibration Analysis of Multi-Delaminated Beams (다층 층간분리된 적층보의 자유진동해석)

  • 이성희;박대효;백재욱;한병기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.469-479
    • /
    • 2001
  • In the present study, free vibration analysis of multi-delaminated beams is performed. In order to investigate the effects of mu1ti-delaminations on the dynamic characteristics of multi-delaminated beams, the general kinematic continuity conditions are derived from the assumption of constant curvature at the multi-delamination tip. Frequency equations of multi-delaminated beams are obtained by dividing the global multi-delaminated beam into beam segments and by imposing recurrence relation from the continuity conditions un each sub-beam. The comparisons between the results of numerical analysis obtained by finite element analysis and those of present analysis give good agreement with each other. It is shown that the effects of multi-delaminations on free vibration characteristics of laminated beams could be used to detect their sizes, types and locations from the results.

  • PDF

Experimental behaviour of composite beams subjected to a hogging moment

  • Pecce, Marisa;Rossi, Fernando;Bibbo, Fabio Antonio;Ceroni, Francesca
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.395-412
    • /
    • 2012
  • The present work addresses the rotational capacity of steel-concrete composite beams, which is a key issue for the seismic design of composite frames. Several experimental tests from the literature are summarised, and the effects of various parameters on the available plastic rotation are discussed. Furthermore, a number of remarks are made regarding the need for supplementary experimental results. The authors carried out experimental tests on four composite beams in which the type, width and connection degree of the slab were varied. During the tests, the deflection and strains in the steel profiles and bars were measured and recorded, wherein the observed trends in the measured parameters indicated that the failure mode of the beam was influenced by global and local buckling. A comparison of the experimental results to the theoretical ultimate strengths and moment-curvature relationships confirms that buckling phenomena occurred after section yielding, even if a consistent plastic rotation developed. This rotational capacity is well evaluated by a formulation that is available in the literature.

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

KNOWLEDGE-BASED BOUNDARY EXTRACTION OF MULTI-CLASSES OBJECTS

  • Park, Hae-Chul;Shin, Ho-Chul;Lee, Jin-Sung;Cho, Ju-Hyun;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1968-1971
    • /
    • 2003
  • We propose a knowledge-based algorithm for extracting an object boundary from low-quality image like the forward looking infrared image. With the multi-classes training data set, the global shape is modeled by multispace KL(MKL)[1] and curvature model. And the objective function for fitting the deformable boundary template represented by the shape model to true boundary in an input image is formulated by Bales rule. Simulation results show that our method has more accurateness in case of multi-classes training set and performs better in the sense of computation cost than point distribution model(PDM)[2]. It works well in distortion under the noise, pose variation and some kinds of occlusions.

  • PDF