• Title/Summary/Keyword: Global Time

Search Result 4,383, Processing Time 0.034 seconds

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Time-series changes in visual fatigue and depth sensation while viewing stereoscopic images

  • Kim, Sang-Hyun;Kishi, Shinsuke;Kawai, Takashi;Hatada, Toyohiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1099-1102
    • /
    • 2009
  • Conventional stereoscopic (3D) displays using binocular parallax generate unnatural conflicts between convergence and accommodation. Those conflicts can affect the ability to fuse binocular images and may cause visual fatigue. This study examined time-series changes in visual fatigue and depth sensation while viewing stereoscopic images with changing parallax. We examined the physiological changes, including the subjective symptoms of visual fatigue, when viewing five parallax conditions. The time-series results suggest that 2D and 3D images produce significantly different types of visual fatigue over the range of binocular disparity.

  • PDF

A Design of Global Optimal Sliding Mode Control for Motor Systems (모터시스템의 전역 최적 슬라이딩모드 제어기의 설계)

  • Choi, Hyeung-Sik;Cho, Yong-Sung;Park, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.101-107
    • /
    • 2000
  • A design of the global optimal sliding mode control is presented to control the second order uncertain time varying system with torque limit. With specified ranges of parametric uncertainties and torque limit, the minimum arrival time to reference inputs can be calculated. The proposed control scheme is applied to the motor system carrying loads. The merit of the proposed control scheme is that the arriving time at the reference input, which is the revolution angle, and the maximum allowable acceleration are expressed in a closed form solution. The superior performance of the proposed control scheme is validated by the computer simulation and experiments comparing with other sliding mode controllers.

  • PDF

BLOW-UP AND GLOBAL SOLUTIONS FOR SOME PARABOLIC SYSTEMS UNDER NONLINEAR BOUNDARY CONDITIONS

  • Guo, Limin;Liu, Lishan;Wu, Yonghong;Zou, Yumei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1017-1029
    • /
    • 2019
  • In this paper, blows-up and global solutions for a class of nonlinear divergence form parabolic equations with the abstract form of $({\varrho}(u))_t$ and time dependent coefficients are considered. The conditions are established for the existence of a solution globally and also the conditions are established for the blow up of the solution at some finite time. Moreover, the lower bound and upper bound of the blow-up time are derived if blow-up occurs.

Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach (불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계)

  • Sung Hwachang;Joo Younghoon;Park Jinbae;kim Dowan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

GLOBAL STABILITY OF HIV INFECTION MODELS WITH INTRACELLULAR DELAYS

  • Elaiw, Ahmed;Hassanien, Ismail;Azoz, Shimaa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.779-794
    • /
    • 2012
  • In this paper, we study the global stability of two mathematical models for human immunodeficiency virus (HIV) infection with intra-cellular delays. The first model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, $CD4^+$ T cells and macrophages taking into account the saturation infection rate. The second model generalizes the first one by assuming that the infection rate is given by Beddington-DeAngelis functional response. Two time delays are used to describe the time periods between viral entry the two classes of target cells and the production of new virus particles. Lyapunov functionals are constructed and LaSalle-type theorem for delay differential equation is used to establish the global asymptotic stability of the uninfected and infected steady states of the HIV infection models. We have proven that if the basic reproduction number $R_0$ is less than unity, then the uninfected steady state is globally asymptotically stable, and if the infected steady state exists, then it is globally asymptotically stable for all time delays.

Toward Optimal FPGA Implementation of Deep Convolutional Neural Networks for Handwritten Hangul Character Recognition

  • Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Measuring the Degree of Integration into the Global Production Network by the Decomposition of Gross Output and Imports: Korea 1970-2018

  • KIM, DONGSEOK
    • KDI Journal of Economic Policy
    • /
    • v.43 no.3
    • /
    • pp.33-53
    • /
    • 2021
  • The import content of exports (ICE) is defined as the amount of foreign input embodied in one unit of export, and it has been used as a measure of the degree of integration into the global production network. In this paper, we suggest an alternative measure based on the decomposition of gross output and imports into the contributions of final demand terms. This measure considers the manner in which a country manages its domestic production base (gross output) and utilizes the foreign sector (imports) simultaneously and can thus be regarded as a more comprehensive measure than ICE. Korea's input-output tables in 1970-2018 are used in this paper. These tables were rearranged according to the same 26-industry classification so that these measures can be computed with time-series continuity and so that the results can be interpreted clearly. The results obtained in this paper are based on extended time-series data and are expected to be reliable and robust. The suggested indicators were applied to these tables, and, based on the results we conclude that the overall importance of the global economy in Korea's economic strategy has risen and that the degree of Korea's integration into the global production network increased over the entire period. This paper also shows that ICE incorrectly measures the movement of the degree of integration into the global production network in some periods.