• Title/Summary/Keyword: Global Stiffness

Search Result 288, Processing Time 0.027 seconds

The Design of a Self Adjustment Module for $\mu-part$ Assembly ($\mu$-부품 조립용 Self Adjustment Module 개발)

  • Lee Changwoo;Song Junyeob;Ha Taeho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.401-406
    • /
    • 2005
  • According to the ubiquitous times that is new important topic, the miniature is demanded in the industry at large. The high accuracy and accumulation make the assembly equipment and the production equipment huge from the size of view. The huge equipment brings about the expensive price of the equipment, a low flexibleness and a low productivity. It makes the manufacturing equipment huge that the accuracy only depends on the mechanism stiffness. The position of two assembled parts is transformed with the global coordinate system whose datum is machine coordinate system. The purpose of this research is invention of the module that can adjust one part to the order part automatically. The module that has a function of self adjustment only takes a stiffness in assemble direction and can be moved freely in the other direction so this function makes a self adjustment. The self adjustment module reduces the tact time and also diminishes the inferior goods and makes reconfigurable machine in $\mu-part$ assembly.

  • PDF

Dynamic Analysis of Multi-Span Continuous Bridges under Combined Effects of Earthquake and Local Scour (지진과 세굴의 복합적인 영향을 받는 연속교의 동적거동분석)

  • 김상효;마호성;이상우;심정욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.166-173
    • /
    • 2002
  • Seismic bridge failure due to the combined effects of earthquake and local scour are examined in probabilistic perspectives. The seismic responses of multi-span continuous bridge with deep foundations are evaluated with a simplified mechanical model. The probabilistic local scour depths around the deep foundations are estimated by using the Monte Carlo simulation. From the simulation results, it is found that seismic responses of a bridge slightly increase due to the local scour effect. The effect of local scour on the global motion of the continuous bridge is found to be significant under weak seismic intensity. In addition, the duration to regain its original foundation stiffness is critical in estimating the probability of foundation failure under earthquake. Therefore, the duration in recovering the foundation stiffness should be determined reasonably and the safely of the whole bridge system should be evaluated by considering the scour effect.

  • PDF

Behavior and Hysteresis Characteristics of Traditional Timber Framers under Lateral Load (전통 문화재 목조 프레임의 횡하중에 대한 거동 및 이력특성)

  • 이필성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.396-403
    • /
    • 1999
  • This experimental study investigates the hysterestic behavior of traditional timber frames subjected to lateral loads. Prototype frames for this study were selected from one of typical national treasures for timber structures in Korea. For simplicity roof structures and braket systems were excluded from specimens and the joint behavior of beam-to-column system were presumed to have crucial effect on their global behavior. The experimental observation showed stiffness degradation and slip after experiencing initial yield and the first cycle at a new larger displacement due to inherent gaps in traditional timber connection and gradual indentation of interfaces, The cyclic behaviors of all specimens were similar to those os modern timber frames with bolt and nail connections. Additional structural members such as an upper beam and clay-filled wall increased the initial stiffness strength and energy dissipation. It is expected that collapse of Korean traditional timber frames under lateral load is mainly caused from P-$\Delta$ effects rather than local member failure.

  • PDF

Influence of specimen height on the shear behavior of glass beads in the direct shear test

  • Young-Ho Hong;Yong-Hoon Byun;Jong-Sub Lee
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • A box scale affects the shear behavior of soils in the direct shear test. The purpose of this study is to investigate the scale effect on the shear behavior of dilative granular materials by testing specimens of different heights placed in a type C shear box. Experimental tests were performed on specimens composed of glass beads with different heights and equal initial void ratios. Results showed that the peak friction and dilation angles linearly increased with the specimen height; however, the residual friction angle remained relatively constant. Similarly, the shear stiffness increased with the specimen height, rapidly reaching its peak state. Height does not have a significant effect on the total volume changes; nevertheless, a high aspect ratio can be assumed to result in global and homogeneous failure. The results and interpretations may be used as reference for recommending shear box scale in direct shear tests.

Stress History Evaluation for Truss Bridge with Local Damages by Using Global-Local Model Combination (전체해석과 국부해석 조합법을 이용한 국부결함이 있는 트러스교 응력이력해석)

  • Kim, Hyo-Jin;Park, Sang-il;Bae, Gi-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • This study predicts the stress history for truss bridge with local damages by using global-local model combination method. For this end, the global structure is modeled by 3D frame elements and the selected local details are modeled by shell elements. Then superposition principle enable the global-local model to be combined interactively. Because the frame model cannot consider the rigidity of gusset plate and the interation of structural members due to the complexity of stress distribution in truss connection. The section modification factors are proposed to calibrate the stiffness of global frame element. The global-local model combination is verified by comparing the numerical results with experimental data obtained from the proof loading test to the operating truss bridge. Furthermore, stress histrories of the truss bridge are generated in the consideration of the rigidity of truss connection with local damage by using the combination method.

  • PDF

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

Damage Simulation of Natural Draught Cooling Towers

  • Noh, S.Y.;Huh, Y.
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • Natural draught cooling towers often develop visible crack structures as consequences of progressive damage processes over their life-time. The aim of this paper is a numerical demonstration of the progressive damage process of cooling towers, representatively for the reinforced concrete structures, in order to improve the durability and extend the life-time of structures subjected to such damage processes. For the analyses, the applied material model for reinforced concrete will be briefly introduced. An existing natural draught cooling tower with a pronounced crack structure, in which this crack structure indicates the typical damage pattern of large cooling towers will be numerically simulated. The change of dynamical behavior of the structure with regard to natural frequencies, reflecting the global damage process due to the degrading stiffness of the structure in dependence of the load type and intensity, will be presented and discussed.

  • PDF

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

Development of Design Static Property Analysis of Mooring System Caisson for Offshore Floating Wind Turbine

  • Dodaran, Asgar Ahadpour;Park, Sang-Kil
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • A all floating structures operating within a limited area require, stationkeeping to maintain the motions of the floating structure within permissible limits. In this study, methods for selecting and optimizing the mooring system Caisson for floating wind turbines in shallow water are investigated. The design of the mooring system is checked against the governing rules and standards. Adequately verifying the design of floating structures requires both numerical simulations and model testing, the combination of which is referred to as the hybrid method of design verification. The challenge in directly scaling moorings for model tests is the depth and spatial limitations of wave basins. It is therefore important to design and build equivalent mooring systems to ensure accurate static properties (global restoring forces and global stiffness).

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.