• Title/Summary/Keyword: Global State

Search Result 1,436, Processing Time 0.028 seconds

Part tolerancing through multicale defect analysis

  • Petitcuenot, Mathieu;Anselmetti, Bernard
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • When manufactured parts undergo large deformations during the manufacturing process, the global specifications of a part based on the concept of tolerance zone defined in the ISO 1101 standard [1] enable one to control the part's global defects. However, the extent of this tolerance zone is too large when the objective is to minimize local defects, such as hollows and bumps. Therefore, it is necessary to address local defects and global defects separately. This paper refers to the ISO 10579 standard [2] for flexible parts, which enables us to define a stressed state in order to measure the part by straightening it to simulate its position in the mechanism. The originality of this approach is that the straightening operation is performed numerically by calculating the displacement of a cloud of points. The results lead to a quantification of the global defects through various simple models and enable us to extract local defects. The outcome is an acceptable tolerance solution. The procedure is first developed for the simple example of a steel bar with a rectangular cross section, then applied to an industrial case involving a complex 3D surface of a turbine blade. The specification is described through ISO standards both in the free state and in the straightened state.

Running Control of Quadruped Robot Based on the Global State and Central Pattern

  • Kim, Chan-Ki;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.308-313
    • /
    • 2005
  • For a real-time quadruped robot running control, there are many important objectives to consider. In this paper, the running control architecture based on global states, which describe the cyclic target motion, and central pattern is proposed. The main goal of the controller is how the robot can have robustness to an unpredictable environment with reducing calculation burden to generate control inputs. Additional goal is construction of a single framework controller to avoid discontinuities during transition between multi-framework controllers and of a training-free controller. The global state dependent neuron network induces adaptation ability to an environment and makes the training-free controller. The central pattern based approach makes the controller have a single framework, and calculation burden is resolved by extracting dynamic equations from the control loop. In our approach, the model of the quadruped robot is designed using anatomical information of a cat, and simulated in 3D dynamic environment. The simulation results show the proposed single framework controller is robustly performed in an unpredictable sloped terrain without training.

  • PDF

Contact-Type Ball Tracking Sensor Robust to Impulsive Measurement Noises for Low-cost Ball-and-beam Systems (임펄스 측정잡음에 강인한 저가형 볼앤빔 시스템의 접촉식 볼 추적센서 개발)

  • Jang, Joo Young;Lee, Jaseung;Yoon, Hansol;Ra, Won-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1136-1141
    • /
    • 2014
  • This paper proposes a new contact type ball tracking sensor to improve the control performance of a low cost ball-and-beam system. It is well-known that the impulsive measurement noise contained in ball position measurement is one of the factors which severely degrades the ball-and-beam control performance. The impulsive ball position measurement noises often appear under the sporadical ball floating on the beam. This fact motivates us to devise a simple analog preprocessing circuit to determine whether the ball loses the contact or not. Once the abnormal ball position measurement is detected, the design problem of the ball tracking sensor can be cast into the typical state estimation problem with missing data. In order to tackle the real-time implementation issue, a steady-state Kalman filter is applied to the problem. Through the experimental results, the usefulness of the proposed scheme is demonstrated.

GLOBAL STABILITY OF A TUBERCULOSIS MODEL WITH n LATENT CLASSES

  • Moualeu, Dany Pascal;Bowong, Samuel;Emvudu, Yves
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1097-1115
    • /
    • 2011
  • We consider the global stability of a general tuberculosis model with two differential infectivity, n classes of latent individuals and mass action incidence. This system exhibits the traditional threshold behavior. There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction ratio $\mathcal{R}_0$, this state can be either endemic ($\mathcal{R}_0$ > 1), or infection-free ($\mathcal{R}_0{\leq}1$). The global stability of this model is derived through the use of Lyapunov stability theory and LaSalle's invariant set theorem. Both the analytical results and numerical simulations suggest that patients should be strongly encouraged to complete their treatment and sputum examination.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

STABILITY OF IMPULSIVE CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Lijuan;Yu, Lixin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1327-1335
    • /
    • 2011
  • This paper demonstrates that there is a unique exponentially stable equilibrium state of a class of impulsive cellular neural network with delays. The analysis exploits M-matrix theory and generalized comparison principle to derive some easily verifiable sufficient conditions for the global exponential stability of the equilibrium state. The results extend and improve earlier publications. An example with its simulation is given for illustration of theoretical results.

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1827-1840
    • /
    • 2013
  • This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM OF A MATHEMATICAL MODEL FOR UNSTIRRED MEMBRANE REACTORS

  • Song, Yongli;Zhang, Tonghua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.383-389
    • /
    • 2017
  • This paper devotes to the study of a diffusive model for unstirred membrane reactors with maintenance energy subject to a homogeneous Neumann boundary condition. It shows that the unique constant steady state is globally asymptotically stable when it exists. This result further implies the non-existence of the non-uniform steady state solution.

Output Feedback Semi-Global Stabilization for Input-Affine Nonlinear Systems

  • Hyungbo Shim;Seo, Jin-Heon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.104-109
    • /
    • 2000
  • In this paper, the output feedback stabilizing problem is solved using any given state feedback control law. Compared to the linear systems is not so straightforward for nonlinear systems. We briefly explain the intrinsic obstructions for this problem and provide new output feedback scheme which achieves the semi-global stabilization with the high-gain state observer. THe overall uniform observability of the plant. Therefore, the result can be regarded as an extension of the separation principle for linear systems in some aspect.

  • PDF