• Title/Summary/Keyword: Global State

Search Result 1,436, Processing Time 0.029 seconds

Model-Based Analysis of the $ZrO_2$ Etching Mechanism in Inductively Coupled $BCl_3$/Ar and $BCl_3/CHF_3$/Ar Plasmas

  • Kim, Man-Su;Min, Nam-Ki;Yun, Sun-Jin;Lee, Hyun-Woo;Efremov, Alexander M.;Kwon, Kwang-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.383-393
    • /
    • 2008
  • The etching mechanism of $ZrO_2$ thin films and etch selectivity over some materials in both $BCl_3$/Ar and $BCl_3/CHF_3$/Ar plasmas are investigated using a combination of experimental and modeling methods. To obtain the data on plasma composition and fluxes of active species, global (0-dimensional) plasma models are developed with Langmuir probe diagnostics data. In $BCl_3$/Ar plasma, changes in gas mixing ratio result in non-linear changes of both densities and fluxes for Cl, $BCl_2$, and ${BCl_2}^+$. In this work, it is shown that the non-monotonic behavior of the $ZrO_2$ etch rate as a function of the $BCl_3$/Ar mixing ratio could be related to the ion-assisted etch mechanism and the ion-flux-limited etch regime. The addition of up to 33% $CHF_3$ to the $BCl_3$-rich $BCl_3$Ar plasma does not influence the $ZrO_2$ etch rate, but it non-monotonically changes the etch rates of both Si and $SiO_2$. The last effect can probably be associated with the corresponding behavior of the F atom density.

  • PDF

A study on Marine Protected Areas as Fisheries Management Tools (어업자원 관리수단으로서의 해양보호구역제도에 관한 연구)

  • Chae, Dong-Ryul;Nam, Su-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.3
    • /
    • pp.41-61
    • /
    • 2011
  • Marine protected Areas(MPAs) are specially designated zones of the sea that are designed to secure operation of ecosystem function and to restore marine ecosystem to the original state by excluding all detrimental human activities. MPAs have been proposed in many countries as means of realizing sustainable fisheries and recently MPAs are newly receiving attention as precautionary measure for global warming and climate change. The purpose of this paper is to examine the possibility of MPAs as fisheries management tools through a wide range of literature analysis and to suggest necessity of fisheries purpose of MPAs in Korea. Establishment of marine protected area can accompany various economic benefits such as restoration of marine environment, preservation of habitats, promotion of marine tourism and so on. Especially, a lot of case studies suggested that MPAs may bring out benefits to the fishing industry as a result of enhanced stocks. Fisheries benefits of MPAs on targeted species include increased abundance, increased mean individual size and age, increased reproductive output, enhanced recruitment inside and outside refuge, maintenance of genetic diversity of stocks, and enhanced fishery yields in adjacent fishing grounds, so called spill-over. MPAs for ecosystem conservation and protection of coastal wetland have been applied appropriately and effectively, however, the Korean MPAs system is still detective due to absence of fisheries purpose MPAs. Finally, suggestions for Korean MPAs can be summarized as following four recommendations; to establish number of small-scale MPAs rather than few large MPAs, to designate island and its surrounding areas as reserve, to consider MPA design with stock enhancement program, and to undertake co-management with Eochon-Gye, the traditional coastal community in Korea.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Estimating Ocean Tidal Constituents Using SAR Interferometric Time Series over the Sulzberger Ice Shelf, W. Antarctica

  • Baek, Sang-Ho;Shum, C.K.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.343-353
    • /
    • 2018
  • Ocean tides in Antarctica are not well constrained mostly due to the lack of tidal observations. Especially, tides underneath and around ice shelves are uncertain. InSAR (Interferometric Synthetic Aperture Radar) data has been used to observe ice shelf movements primarily caused by ocean tides. Here, we demonstrate that it is possible to estimate tidal constituents underneath the Sulzberger ice shelf, West Antarctica, solely using ERS-1/2 tandem mission DInSAR (differential InSAR) observations. In addition, the tidal constituents can be estimated in a high-resolution (~200 m) grid which is beyond any tidal model resolution. We assume that InSAR observed ocean tidal heights can be derived after correcting the InSAR data for the effect of atmospheric loading using the inverse barometric effect, solid earth tides, and ocean tide loading. The ERS (European Remote Sensing) tandem orbit configuration of a 1-day separation between SAR data takes diminishes the sensitivity to major tidal constituents including $K_1$ and $S_2$. Here, the dominant tidal constituent $O_1$ is estimated using 8 differential interferograms underneath the Sulzberger ice shelf. The resulting tidal constituent is compared with a contemporary regional tide model (CATS2008a) and a global tide model (TPXO7.1). The InSAR estimated tidal amplitude agrees well with both models with RMS (root-mean-square) differences of < 2.2 cm and the phase estimate corroborating both tide models to within $8^{\circ}$. We conclude that fine spatial scale (~200 m) Antarctic ice shelf ocean tide determination is feasible for dominant constituents using C-band ERS-1/2 tandem mission InSAR.

The Case Report of 3 Dementia Patients Treated by Needle-Embedding Therapy (치매 환자의 매선 요법 치료에 관한 치험 3예)

  • Bae, Dal-Bit;Park, Jang-Ho;Lyu, Yun-Sun;Lee, Go-Eun;Jung, Hyun-Gook;Kang, Hyoung-Won;Lyu, Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.3
    • /
    • pp.99-116
    • /
    • 2012
  • Objectives : The purpose of this study is to evaluate the effects of Needle-Embedding Therapy on dementia patients. Methods : We recruited 3 dementia patients who have been experiencing memory disorder and orientation disorder. The patients had been evaluated with Mini-Mental State Examination-K (MMSE-K), Global Deterioration Scale (GDS) and Clinical Dementia Rating (CDR). The patients were treated with herbal medication (Sunghyangjunggi-san) and acupuncture. After 15 days, the patients were added to Needle-Embedding Therapy. We measured MMSE-K, GDS and CDR for every 15 days. The effects of additional Needle-Embedding Therapy were compared with the effects of acupuncture and herbal medicine. Results : After Needle-Embedding Therapy was added, Patients' memory and orientation have been improved and the score of MMSE-K ascended. The grade of GDS and CDR were maintained or decreased. Conclusions : This study suggests that Needle-Embedding Therapy is significantly effective on Dementia patients.

Implementations of Geographic Information Systems on Sewage Management for Water Resources Protection

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Chou, Wen-Shang;Huang, Hsiu-Lan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1188-1190
    • /
    • 2003
  • Taipei Watershed Management Bureau (WRATB) is a government agency entitled for water resources protection at two major watersheds in order to provide drinking water for about four millions population in Taipei on a sustainable basis. At WRATB, there are two major public sewage treatment facilities which can convert sewage in each watershed into an acceptable state before they were discharged into rivers. More than 82% of household wastewater have been collected and treated by the two public sewage systems. However, households at remote area still need more effective sewage management prescriptions. The objective of this paper is to implement geographic information systems in order to provide more effective approaches that sewage management can be easier and cost effective. ArcIMS was implemented for Internet browsing and map server of those sewage facilities on personal computers, laptop computers. In the open field, ArcPAD was implemented with personal digital assistant (PDA) such that compact flash type's global positioning systems (GPS) and digital camera can be utilized with PDA. All sewage facilities digital files were convert into ArcMap format files. MapObjects and visual BASIC were used to create sewage application modules to meet every single technician personal flavor. ASP.NET was implemented for Internet database manipulations of all sewage databases. Mobile GIS was the key component of GIS applications in the open field for sewage management on a basis of house by house. Houses at remote area, which can not cover by the two public sewage systems, were managed by PDA and laptop computers with GPS and digital camera. Sewage management at Taipei Watershed Management Bureau is easier both in the open field and in the office. Integration of GPS, GIS, and PDA makes sewage management in the open field much easier. ArcIMS, MapObjects, ASP.NET and visual BASIC make sewage management can be done in the office and over Internet.

  • PDF

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed (기후변화에 따른 유역의 수문요소 및 수자원 영향평가)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Kim Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF

Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model (토양-식생-대기 이송모형내의 육지수문모의 개선)

  • Choi, Hyun-Il;Jee, Hong-Kee;Kim, Eung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed (다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역)

  • Song, Younghoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1011-1023
    • /
    • 2019
  • Rapid urbanization increases the risk of hydrologic disasters due to the increase of impervious areas in urban areas. Precipitation characteristics can be transformed due to the rise of global temperatures. Thus urban areas with the increased impervious areas are more exposed to hydrological disasters than ever before. Therefore, low impact development practices have been widely installed to rehabilitate the distorted hydrologic cycle in the urban area. This study used the Stormwater Management Model to analyze the water quantity and quality of the Mokgamcheon which had been severely urbanized, considering future climate scenarios presented by various general circulation models (GCMs). In addition the effectiveness of permeable pavement by 27 sub-watersheds was simulated in terms of water quantity and quality considering various GCMs and then the priorities of sub-watersheds were derived using an alternative valuation index which uses the pressure-state-response framework.