• 제목/요약/키워드: Global Motion Estimation

검색결과 78건 처리시간 0.026초

물체추적을 위한 FPGA 구현에 대한 연구 (A Study about Implementation of Object Tracking on FPGA)

  • 양찬우;김동훈;신윤수;고광철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.525-528
    • /
    • 2002
  • This study describes an implementation of object tracking algorithm on FPGA. The global system detect the zone there is more motion in, attending to the generated optical flow, and centers its attention to it to improve the details In this case, To obtain image in Camera, Image aquisition board make use of SAA7113 Video Input processor and algorithm is applied to motion estimation and difference picture. Also, This work can be applied kalman filter to reliability of tracking.

  • PDF

스윙 모션 사전 지식을 활용한 정확한 야구 선수 포즈 보정 (Motion Prior-Guided Refinement for Accurate Baseball Player Pose Estimation)

  • 오승현;김희원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.615-616
    • /
    • 2024
  • 현대 야구에서 타자의 스윙 패턴 분석은 상대 투수가 투구 전략을 수립하는데 상당히 중요하다. 이미지 기반의 인간 포즈 추정(HPE)은 대규모 스윙 패턴 분석을 자동화할 수 있다. 그러나 기존의 HPE 방법은 빠르고 가려진 신체 움직임으로 인해 복잡한 스윙 모션을 정확하게 추정하는 데 어려움이 있다. 이러한 문제를 극복하기 위해 스윙 모션에 대한 사전 정보를 활용하여 야구 선수의 포즈를 보정하는 방법(BPPC)을 제안한다. BPPC는 동작 인식, 오프셋 학습, 3D에서 2D 프로젝션 및 동작 인지 손실 함수를 통해 스윙 모션에 대한 사전 정보를 반영하여 기성 HPE 모델 결과를 보정한다. 실험에 따르면 BPPC는 벤치마크 데이터셋에서 기성 HPE 모델의 2D 키포인트 정확도를 정량적 및 정성적으로 향상시키고, 특히 신뢰도 점수가 낮고 부정확한 키포인트를 크게 보정했다.

시공간 엔트로피 임계법과 카메라 패닝 보상을 이용한 객체 기반 동영상 분할 (Object-Based Video Segmentation Using Spatio-temporal Entropic Thresholding and Camera Panning Compensation)

  • 백경환;곽노윤
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.126-133
    • /
    • 2003
  • 본 논문은 비디오 시퀸스에 카메라 패닝 보상과 2차원 시공간 엔트로피 임계법을 적용하여 추출한 객체포함영역을 대상으로 영상 분할을 수행하는 이동객체 분할 기법에 관한 것이다. 우선, 웨이블렛 변환에 의해 구성한 피라미드 계층 구조상에서 카메라 패닝 벡터를 추정하여 전역 움직임을 보상한다. 이후, 전역 움직임이 보상된 기준영상을 대상으로 각 프레임간에서 2차원 시공간 엔트로피 임계법을 적용하여 이동 객체가 포함될 가능성이 있는 영역을 블록 단위로 추출한다 다음으로, 2차원 시공간 엔트로피 임계법에 의해 분류된 영역을 토대로 각 블록을 움직임 블록, 준 움직임 블록, 비 움직임 블록 중 어느 하나로 분류한 검색 테이블을 작성한다. 이어서, 검색 테이블을 참조하여 초기 탐색 계층 및 탐색 영역을 적응적으로 선정함으로써 피라미드 계층 구조상에서 효율적인 고속 움직임 추정을 수행하여 이동 객체에 해당하는 객체포함영역만을 추출한다. 최종적으로, 이렇게 추출된 객체포함영역에서 임계 기울기 영상을 정의한 후, 이를 기준 삼아 객체포함영역에 화소단위의 형태학 기반 영상 분할 알고리즘을 적용함으로써 비디오 시퀸스에 포함된 이동 객체를 분할한다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방법은 이동 객체에 대한 상대적으로 우수한 분할 특성을 제공할 수 있고, 특히 저대조 경계면의 분할 특성을 제고시키고 있음을 확인할 수 있다.

  • PDF

국소적 위상기반 어파인 모델을 이용한 강인한 카메라 움직임 추정 (Robust Estimation of Camera Motion Using A Local Phase Based Affine Model)

  • 장석윤;윤창용;박민용
    • 전자공학회논문지CI
    • /
    • 제46권1호
    • /
    • pp.128-135
    • /
    • 2009
  • 동영상에서 시공간상 일정한 위상을 갖는 윤곽선을 정합시켜 물리적 공간에서의 동일한 위치를 추적하는 방법은 명암이 일정한 윤곽선을 정합시키거나 일정한 명암을 전제로 추적하는 방법에 비해 정확성이 높고 조명조건에 대해 안정된 특성이 있다. 본 논문에서는 이러한 성질을 이용하여 조명변화와 노이즈에 강인하게 카메라의 움직임을 추정하는 기법을 소개한다. 우선, 가버 필터뱅크를 사용하여 공간적으로 여과된 연속영상으로부터 계산된 위상의 크기를 기반으로 필터의 방향과 수직인 곳의 광류를 구한 후, 최소제곱법을 적용하여 어파인 모델에 상응하는 카메라의 움직임 파라미터를 구한다. 실험을 통하여 이러한 방법은 조명조건의 변화를 야기하는 디스플레이 기기를 피사체로 하여 카메라의 위치변화를 추정하는 방식의 영상기반 포인팅 디바이스에도 적용될 수 있음을 보인다.

RBF 신경망을 이용한 실루엣 기반 유아 동작 인식 (Silhouette-based motion recognition for young children using an RBF network)

  • 김혜정;이경미
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.119-129
    • /
    • 2007
  • 본 논문에서는 두 대의 카메라를 직각으로 배치하여 얻은 동영상에서 인체의 실루엣을 이용하여 동작을 인식하는 방법을 제안한다. 제안된 시스템은 실루엣에서 전역 특징과 지역 특징을 추출하며, 이 특징들은 정적인 프레임에만 있느냐에 따라 정적 특징과 동적 특징으로 다시 나뉜다. 추출된 특징들은 RBF 신경망을 훈련시키기 위해 사용된다. 제안된 신경망은 정적 특징을 입력층으로 보내고, 동적 특징은 인식을 위한 추가적인 특징으로 이용한다. 본 논문에서 제안된 신경망 동작 인식 시스템은 유아들의 동작 교육에 적용되었다. 동작 교육을 위해 제시되는 기본 동작은 걷기, 뛰기, 앙감질 등의 이동 동작과 구부리기, 뻗기, 균형 잡기, 회전하기 등 비 이동 동작으로 구분된다. 제안된 시스템은 동작교육을 위해 7가지 기본 동작을 학습시킨 신경망으로 성공적으로 동작 인식을 하였다. 제안된 시스템은 유아의 공간감각 계발을 위한 동작교육 시스템에 활용될 수 있다.

  • PDF

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

근접감시용 무인항공기 시스템을 위한 영상 안정화 알고리즘 (Image Stabilization Algorithm for Close Watching UAV(Unmanned Aerial Vehicle) Aystem)

  • 이홍석;이태영;김병수;고윤호
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.10-18
    • /
    • 2010
  • 본 논문에서는 움직임 분리와 안정화 모드를 이용하여 근접감시용 무인항공기의 영상을 안정화 시키는 알고리즘을 제안하였다. 무인 항공기에서 촬영된 영상에는 임무에 의한 움직임과 기체의 진동에 의한 움직임이 혼합되어 나타난다. 영상을 안정화하기 위해서는 진동에 의한 움직임을 제거하여야 한다. 제안된 알고리즘에서는 연속된 두 영상의 전역움직임을 6계수 움직임 모형과 2계수 밝기변화 모형으로 모델링하고 Gauss-Newton 알고리즘에 기반한 비선형 최소 제곱법(non-linear least squares)을 이용하여 움직임을 추정하였다. 추정된 움직임에서 IIR 필터를 이용하여 진동에 의한 움직임을 분리하여 제거함으로서 영상을 안정화 하였다. 또한 안정화 영상 생성시 시점의 변화가 많은 실제 무인항공영상에 적용하기 위하여 초기화 상태와 안정화 상태의 두 가지의 상태를 가지는 안정화 모드를 제안하였다. 실험결과 99%의 정확도로 전역 움직임을 추정하였고, 90%의 진동에 의한 움직임 제거 성능을 보였다. 또한, 제안한 알고리즘을 실제 항공영상에 적용하여 영상이 안정화 되는 것을 확인하였다.

Lightweight Attention-Guided Network with Frequency Domain Reconstruction for High Dynamic Range Image Fusion

  • 박재현;이근택;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.205-208
    • /
    • 2022
  • Multi-exposure high dynamic range (HDR) image reconstruction, the task of reconstructing an HDR image from multiple low dynamic range (LDR) images in a dynamic scene, often produces ghosting artifacts caused by camera motion and moving objects and also cannot deal with washed-out regions due to over or under-exposures. While there has been many deep-learning-based methods with motion estimation to alleviate these problems, they still have limitations for severely moving scenes. They also require large parameter counts, especially in the case of state-of-the-art methods that employ attention modules. To address these issues, we propose a frequency domain approach based on the idea that the transform domain coefficients inherently involve the global information from whole image pixels to cope with large motions. Specifically we adopt Residual Fast Fourier Transform (RFFT) blocks, which allows for global interactions of pixels. Moreover, we also employ Depthwise Overparametrized convolution (DO-conv) blocks, a convolution in which each input channel is convolved with its own 2D kernel, for faster convergence and performance gains. We call this LFFNet (Lightweight Frequency Fusion Network), and experiments on the benchmarks show reduced ghosting artifacts and improved performance up to 0.6dB tonemapped PSNR compared to recent state-of-the-art methods. Our architecture also requires fewer parameters and converges faster in training.

  • PDF

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.

A Non-uniform Correction Algorithm Based on Scene Nonlinear Filtering Residual Estimation

  • Hongfei Song;Kehang Zhang;Wen Tan;Fei Guo;Xinren Zhang;Wenxiao Cao
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.408-418
    • /
    • 2023
  • Due to the technological limitations of infrared thermography, infrared focal plane array (IFPA) imaging exhibits stripe non-uniformity, which is typically fixed pattern noise that changes over time and temperature on top of existing non-uniformities. This paper proposes a stripe non-uniformity correction algorithm based on scene-adaptive nonlinear filtering. The algorithm first uses a nonlinear filter to remove single-column non-uniformities and calculates the actual residual with respect to the original image. Then, the current residual is obtained by using the predicted residual from the previous frame and the actual residual. Finally, we adaptively calculate the gain and bias coefficients according to global motion parameters to reduce artifacts. Experimental results show that the proposed algorithm protects image edges to a certain extent, converges fast, has high quality, and effectively removes column stripes and non-uniform random noise compared to other adaptive correction algorithms.