• Title/Summary/Keyword: Global Construction

Search Result 1,363, Processing Time 0.031 seconds

Experimental Study on Low Cyclic Loading Tests of Steel Plate Shear Walls with Multilayer Slits

  • Lu, Jinyu;Yu, Shunji;Qiao, Xudong;Li, Na
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1210-1218
    • /
    • 2018
  • A new type of earthquake-resisting element that consists of a steel plate shear wall with slits is introduced. The infill steel plate is divided into a series of vertical flexural links with vertical links. The steel plate shear walls absorb energy by means of in-plane bending deformation of the flexural links and the energy dissipation capacity of the plastic hinges formed at both ends of the flexural links when under lateral loads. In this paper, finite element analysis and experimental studies at low cyclic loadings were conducted on specimens with steel plate shear walls with multilayer slits. The effects caused by varied slit pattern in terms of slit design parameters on lateral stiffness, ultimate bearing capacity and hysteretic behavior of the shear walls were analyzed. Results showed that the failure mode of steel plate shear walls with a single-layer slit was more likely to be out-of-plane buckling of the flexural links. As a result, the lateral stiffness and the ultimate bearing capacity were relatively lower when the precondition of the total height of the vertical slits remained the same. Differently, the failure mode of steel plate shear walls with multilayer slits was prone to global buckling of the infill steel plates; more obvious tensile fields provided evidence to the fact of higher lateral stiffness and excellent ultimate bearing capacity. It was also concluded that multilayer specimens exhibited better energy dissipation capacity compared with single-layer plate shear walls.

Study on Influencing Factors of Port Logistics Development Based on Configuration Analysis QCA

  • Li, Jian;Lee, Sang-Chun;Hong, Seung-Lin
    • Journal of Korea Trade
    • /
    • v.25 no.5
    • /
    • pp.58-73
    • /
    • 2021
  • Purpose - In the context of economic globalization and the continuous development of international trade, as countries around the sea peninsula, port construction is particularly important. Based on the research on the influencing factors of port logistics development based on the allocation analysis, QCA (Qualitative Comparative Analysis) provides the basis for the planning and policy of port logistics development and has important theoretical value and practical significance for improving the level of port logistics management, reducing logistics operating costs and increasing economic benefits. In the tide of global integration for the development of port logistics, promote the growth of foreign trade economy of the city. It is also of great significance to the development and progress of commerce and trade. Design/methodology - Based on the relevant data samples of various ports in South Korea, this paper uses fsQCA (fuzzy set Qualitative Comparative Analysis) to integrate and analyze the influence mechanism of port logistics development and extracts five influencing factors of port logistics development, including the port's scale and infrastructure in the hard environment, port-neighboring enterprises in the soft environment, hinterland economy and government support. Findings - The five factors are unable to separately constitute the necessary and sufficient conditions of port logistics development, only a combined model can influence lake port logistics development. The scale and infrastructure of the port itself and port-neighboring ring enterprises are the main core conditions, which work together on the port, affect the throughput capacity of the port, and promote the development of port logistics. When the port-neighboring enterprises are not complete and the scale is low, the growth of port throughput will be restrained and the development of port logistics will be affected, whether the hinterland economic benefits are general, the development of port-neighboring enterprises is insufficient, or the government supports are limited. Originality/value - Through the research on the development of port logistics in South Korea from the perspective of configuration, this paper finds the configuration influence of hard environment and soft environment on the development of port logistics, which has important theoretical and practical significance for better promoting the development of port logistics in South Korea.

A Study on Eco-School Design for Sustainable Education Environment in the UK - Focused on BREEAM Certification Projects - (영국의 지속가능한 교육환경을 위한 친환경 학교 디자인에 관한 연구 - BREEAM 인증 사례를 중심으로 -)

  • Bae, Jiyoon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.81-91
    • /
    • 2019
  • The world is constantly endeavoring to reduce global $CO_2$ emissions by international agreements. However, in general, the public cannot be fully understood and it is difficult to know how to implement sustainable development. The purpose of the study is to explore the concept of Eco-School and to investigate the eco-friendly education program in order to prepare an environmental school design guidelines. In addition, an analysis of the UK's Green Certification Program(BREEAM) explores the sustainability of the educational environment and how it achieve the built environment. Furthermore, this study suggests ways to increase sustainability in education and design field. First, through the literature review, recent trends of eco-friendly school design will be analyzed and the concept with characteristics of Eco-School system should be examined. Second, the evaluation factors and application methods of BREEAM will be explored, and the correlation between Eco-School and BREEAM evaluation items by sustainable development goals of United Nations Development Program(UNDP) will be considered. Through the analysis of the BREEAM schools which are constructed in England based on the BREEAM New Construction 2018, design characteristics and methods of eco-friendly schools will be researched so this study suggest practical ways to contribute design guideline which enables to create the specific policy and design improvement of eco-friendly schools in Korea.

Effect of addition of As-received IGCC slag in making geopolymer

  • Kim, Yootaek;Chae, Taesung
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.378-382
    • /
    • 2018
  • It is a known fact that the cement production is responsible for almost 5% of total worldwide $CO_2$ emission, the primary factor affecting global warming. Geopolymers are valuable as ordinary Portland cement (OPC) substitutes because geopolymers release 80% less $CO_2$ than OPC and have mechanical properties sufficiently similar to those of OPC. Therefore, geopolymers have proven attractive to eco-friendly construction industries. Geopolymers can be fabricated from aluminum silicate materials with alkali activators such as fly ash, blast furnace slag, and so on. Integrated gasification combined cycle (IGCC) slag has been used for fabricating geopolymers. In general, IGCC slag geopolymers are fabricated with finely ground and sieved (<128 mesh) IGCC slag. The grinding process of as-received IGCC slag is one of the main costs in geopolymer production. Therefore, the idea of using as-received IGCC slag (before grinding the IGCC slag) as aggregates in the geopolymer matrix was introduced to reduce production cost as well as to enhance compressive strength. As-received IGCC slag (0, 10, 20, 30, 40 wt%) was added in the geopolymer mixing process and the mixtures were compared. The compressive strength of geopolymers with an addition of 10 wt% as-received IGCC slag increased by 19.84% compared to that with no additional as-received IGCC slag and reached up to 41.20 MPa. The enhancement of compressive strength is caused by as-received IGCC slag acting as aggregates in the geopolymer matrix like aggregates in concrete. The density of geopolymers slightly increased to $2.1-2.2g/cm^3$ with increasing slag addition. Therefore, it is concluded that a small addition of as-received IGCC slag into the geopolymer can increase compressive strength and decrease the total cost of the product. Moreover, the direct use of as-received IGCC slag may contribute to environment protection by reducing process time and $CO_2$ emission.

Estimation of Dynamic Characteristics Before and After Restoration of the Stone Cultural Heritage by Vibration Measurement (진동 측정에 의한 석조문화재 복원 공사 전·후의 동특성 추정)

  • Choi, Jae-Sung;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2021
  • Naju Seokdanggan, Treasure No. 49, was dismantled and reconstructed due to poor performance. During construction, the crack area was reinforced and the inclination was improved. It is necessary to analyze the stiffness changes before and after the reconstruction of these cultural properties, and to establish a database of related information. In addition, there is a need for research on a scientific non-destructive testing method capable of predicting or evaluating the reinforcing effect. In this study, a simple equation for estimating the overall stiffness of the structural system was derived from information on the elasticity coefficient and the natural frequency measured by vibration tests before and after reconstruction work, and the applicability of the equation was examined. If the stiffness of important cultural properties is regularly investigated by the suggested method, it is judged that it can be used as data to estimate the time when structural safety diagnosis is necessary or when repair or reinforcement is necessary.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System (한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토)

  • Lee, Sang-ik;Kim, Dong-su;Kim, Taejin;Jeong, Young-joon;Lee, Jong-hyuk;Son, Younghwan;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.

A study on the calculation of carbon credit according to the supply temperature of cogeneration (열병합발전 공급온도에 따른 탄소 배출권 산정 연구)

  • Choi, SangMi;Kim, Minsung;Kim, Soyeon;Lim, JiHun;Jeong, SangHun
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2022
  • As GHG reduction becomes a major global issue, the importance and interest of ETS is increasing. Korea experienced positive effects of the system since the introduction of ETS in 2015, but also faced various problems. The focus of this study is on the issue of applying the ETS system to the group energy of industrial complexes. The group energy of industrial complexes is a unique industrial form of Korea that cannot be found in the world. Therefore, if the system is implemented in the same way as the preceding countries, it will inevitably cause problems. In particular, the group energy of industrial complexes has the characteristic that the conditions and amount of heat supplied are dtermined according to the demands of customers and the amount of power generation is determined accordingly. We investigated how differenct temperatures of heat produced in cogeneration affect carbon credit calculations.

  • PDF