• Title/Summary/Keyword: Gln3

Search Result 135, Processing Time 0.028 seconds

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 (Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성)

  • Woo, Sang Hee;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

Comparison of Clinical Features of 11 Korean Patients with Mucolipidosis II and III Including a Case of Mucolipidosis II with a Novel Mutation of GNPTAB (새로운 GNPTAB 유전자 돌연변이로 진단된 뮤코지방증 2형 1례를 포함한 국내 뮤코지방증 환자의 임상적 특징에 대한 분석)

  • Kim, Jinsup;Yang, Misun;Yang, Aram;Cho, Eun Hye;Park, Hyung-Doo;Sohn, Young Bae;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • Purpose: The aim of this study was to describe the clinical and biochemical features as well as the molecular analysis of a newly diagnosed illustrative case with ML II and to analyze the clinical features of 11 Korean patients with ML II/III. Method: Including a newly diagnosed patient, total 11 patients in 10 families were diagnosed as ML II (n=7) or ML III (n=4) were enrolled in the study. A diagnosis of ML II or III was made by demonstrating increased lysosomal enzyme activities in the plasma and sequence analysis of GNPTAB with characteristic clinical features. Result: A illustrative case of ML II patient was a 17 month-old boy showing characteristic facial appearance, multiple joint contractures with cardiac involvements. The enzyme assay showed increased lysosomal enzyme activities in the plasma. We identified compound heterozygous mutations in GNPTAB sequence analysis, including a frameshift (c.3428dupA [pAsn1143Lysfs*3]) and a nonsense variant c.673C>T (p.Gln225*). In total 11 patients with ML II/III, the patients with ML II showed severe growth retardation (height standard deviation score -3.2 [${\pm}1.5$]), compare to patients with ML III. Furthermore, patients with ML II patients had serious cardiac problem (n=4), hepatomegaly (n=3) and underwent tracheostomy (n=3) with further respiratory support due to respiratory distress. To improve osteoporosis and bone pain, all patients with ML III and four of 7 patients with ML II treated with intravenous pamidronate. Conclusion: Here we showed a newly diagnosed case of ML II and clinical features of 11 Korean patients with ML II or III. These data could be helpful for further diagnosis of mucolipidosis, a rare inherited metabolic disease, in Korea.

  • PDF

Effects of Glutamine, Glycine and Nucleosides/Nucleotide Mixture on Intestinal Mucosal Growth in Rats (흰쥐의 소장 점막 세포의 성장에 미치는 Glutamine, Glycine과 Nucleosides/Nucleotide 혼합물의 효과)

  • 이선영;오현인
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.130-136
    • /
    • 1997
  • Total parenteral nutritional effect was induced by surgical creation of Thiry-Vella fistula(TVFs) in rats. Glutamine, glycine or nucleosides/nucleotide mixture in solution was injected into the loops for 2, 4, 6, 8 days. Control animals received a 0.9% saline solution. Results include weight gain, total protein, DNA, [$^3$H] thymidine incorporation into DNA, morphometry of the intestine in both TVFs and intestine in continuity. Perfusion of nucleosides/nucleotide mixture into the bypassed loops caused an increase in total protein, DNA content, villous height, villous surface area in loops. The injection of glycine into loops caused an increase in [$^3$H] thymidine incorporation but the mean values of the protein and DNA contents were not significantly different from those in group Cont and group Nuc. Overall values for group Gln were slightly higher than those of the control but the differences were not statistically significant. This study suggests that this animal model may be useful for studying the effect of dietary factors on intestinal growth and maturation, separating the direct effect of diet from systemic effect on the intestine.

  • PDF

De novo mutations in COL4A5 identified by whole exome sequencing in 2 girls with Alport syndrome in Korea

  • Han, Kyoung Hee;Park, Jong Eun;Ki, Chang-Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.5
    • /
    • pp.193-197
    • /
    • 2019
  • Alport syndrome (ATS) is an inherited glomerular disease caused by mutations in one of the type IV collagen novel chains (${\alpha}3$, ${\alpha}4$, and ${\alpha}5$). ATS is characterized by persistent microscopic hematuria that starts during infancy, eventually leading to either progressive nephritis or end-stage renal disease. There are 3 known genetic forms of ATS, namely X-linked ATS, autosomal recessive ATS, and autosomal dominant ATS. About 80% of patients with ATS have X-linked ATS, which is caused by mutations in the type IV collagen ${\alpha}5$ chain gene, COL4A5. Although an 80% mutation detection rate is observed in men with X-linked ATS, some difficulties do exist in the genetic diagnosis of ATS. Most mutations are point mutations without hotspots in the COL4A3, COL4A4, and COL4A5 genes. Further, there are insufficient data on the detection of COL4A3 and COL4A4 mutations for their comparison between patients with autosomal recessive or dominant ATS. Therefore, diagnosis of ATS in female patients with no apparent family history can be challenging. Therefore, in this study, we used whole-exome sequencing (WES) to identify mutations in type IV collagen in 2 girls with glomerular basement membrane structural changes suspected to be associated with ATS; these patients had no relevant family history. Our results revealed de novo c.4688G>A (p.Arg1563Gln) and c.2714G>A (p.Gly905Asp) mutations in COL4A5. Therefore, we suggest that WES is an effective approach to obtain genetic information in ATS, particularly in female patients without a relevant family history, to detect unexpected DNA variations.

Isolation and identification of angiotensin I-converting enzyme inhibitory peptides derived from thermolysin-injected beef M. longissimus

  • Choe, Juhui;Seol, Kuk-Hwan;Kim, Hyun-Jin;Hwang, Jin-Taek;Lee, Mooha;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.430-436
    • /
    • 2019
  • Objective: This study identified angiotensin I-converting enzyme (ACE) inhibitory peptides in beef M. longissimus injected with thermolysin (80 ppm) and stored for 3 days at $5^{\circ}C$. Methods: Crude peptides (molecular weight <3 kDa) were obtained from the thermolysin hydrolysate and separated into seven fractions. Fraction V showing the highest ACE inhibitory activity was further fractionated, yielding subfractions V-15, V-m1, and V-m2, and selected for superior ACE inhibitory activity. Finally, twelve peptides were identified from the three peak fractions and the ACE inhibitory activity ($IC_{50}$) of each peptide was evaluated. Results: The Leu-Ser-Trp, Phe-Gly-Tyr, and Tyr-Arg-Gln peptides exhibited the strongest ACE inhibitory activity ($IC_{50}$ values of 0.89, 2.69, and 3.09 mM, respectively) and had higher concentrations (6.63, 10.60, and 29.91 pg/g; p<0.05) relative to the other peptides tested. Conclusion: These results suggest that the thermolysin injection process is beneficial to the generation of bioactive peptides with strong ACE inhibitory activity.

Isolation and Characterization of Antifungal Compounds Produced by Bacillus polyfermenticus CJ6 Isolated from Meju (메주에서 분리한 Bacillus polyfermenticus CJ6가 생산하는 항진균 물질의 분리 및 특성)

  • Yang, Eun-Ju;Ma, Seung-Jin;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.57-65
    • /
    • 2012
  • Antifungal compounds from Bacillus polyfermenticus CJ6 were purified using SPE, preparative HPLC, and reverse phase-HPLC. Antifungal compounds from B. polyfermenticus CJ6 were separated into three fractions (8, B, C) using preparative HPLC. LC/MS analysis of antifungal peaks suggested that B. polyfermenticus CJ6 produces lipopeptides; two kinds of iturin A ($C_{14}$, $C_{15}$), three kinds of surfactins ($C_{13}$, $C_{14}$, $C_{15}$), four kinds of fengycin A ($C_{14}$, $C_{15}$, $C_{16}$, $C_{17}$) and two kinds fengycin B ($C_{16}$, $C_{17}$). The antifungal activity of fraction 8, which was presumed as inturin A, was found to be stable after the pH, heat or proteolytic enzyme treatment, but it was unstable at 50-$70^{\circ}C$ for 24 hr. The antifungal activity of fraction B, which presumed as surfactins and fengycin A, was found to be stable after the heat treatment, but it was unstable in the pH 3.0 and after the protease (type I) or ${\alpha}$-chymotrypsin treatment. The antifungal activity of fraction C, which was presumed as fengycin A and B, was found to be stable in the pH 3.0-9.0 range and the heat treatment, but it was unstable with the treatment of protease (type I). The amino acid composition of the purified peaks 8-1 and 8-2 were Asx, Tyr, Gln, Pro, and Ser in a molar ratio of 3:1:1:1:1, which showed the same amino acid composition as iturin. From these results, we confirmed that antifungal compounds from B. polyfermenticus CJ6 most likely belonged to iturin A as well as surfactins and fengycins. As lipopeptides are known to act in a synergistic manner, the antifungal compounds from B. polyfermenticus CJ6 might have potential uses in biotechnology and biopharmaceutical applications.

Characterization and Action Patterns of Two ${\beta}$-1,4-Glucanases Purified from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Choi, Woo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1291-1299
    • /
    • 2007
  • Two ${\beta}$-1,4-glucanases (DI and DIII fractions) were purified to homogeneity from the culture filtrate of a cellulolytic bacteria, Cellulomonas sp. CS 1-1, which was classified as a novel species belonging to Cellulomonas uda based on chemotaxanomic and phylogenetic analyses. The molecular mass was estimated as 50,000 Da and 52,000 Da for DI and DIII, respectively. Moreover, DIII was identified as a glycoprotein with a pI of 3.8, and DI was identified as a non-glycoprotein with a pI of 5.3. When comparing the ratio of the CMC-saccharifying activity and CMC-liquefying activity, DI exhibited a steep slope, characteristic of an endoglucanase, whereas DIII exhibited a low slope, characteristic of an exoglucanase. The substrate specificity of the purified enzymes revealed that DI efficiently hydrolyzed CMC as well as xylan, whereas DIII exhibited a high activity on microcrystalline celluloses, such as Sigmacells. A comparison of the hydrolysis patterns for pNP-glucosides (DP 2-5) using an HPLC analysis demonstrated that the halosidic bond 3 from the nonreducing end was the preferential cleavage site for DI, whereas bond 2, from which the cellobiose unit is split off, was the preferential cleavage site for DIII. The partial N-terminal amino acid sequences for the purified enzymes were $^1Ala-Gly-Ser-Thr-Leu-Gln-Ala-Ala-Ala-Ser-Glu-Ser-Gly-Arg-Tyr^{15}$-for DI and $^1Ala-Asp-Ser-Asp-Phe-Asn-Leu-Tyr-Val-Ala-Glu-Asn-Ala-Met-Lys^{15}$-for DIII. The apparent sequences exhibited high sequence similarities with other bacterial ${\beta}$-1,4-glucanases as well as ${\beta}$-1,4-xylanases.

Potential of Mean Force Calculations for Ion Selectivity in a Cyclic Peptide Nanotube

  • Choi, Kyu-Min;Kwon, Chan-Ho;Kim, Hong-Lae;Hwang, Hyon-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.911-916
    • /
    • 2012
  • Ion selectivity in a simple cyclic peptide nanotube, composed of four cyclo[-(D-Ala-Glu-D-Ala-Gln)$_2-$] units, is investigated by calculating the PMF profiles of $Na^+$, $K^+$, and $Cl^-$ ions permeating through the peptide nanotube in water. The final PMF profiles of the ions obtained from the umbrella sampling (US) method show an excellent agreement with those from the thermodynamic integration (TI) method. The PMF profiles of $Na^+$ and $K^+$ display free energy wells while the PMF curve of $Cl^-$ features free energy barriers, indicating the selectivity of the cyclic peptide nanotube to cations. Decomposition of the total mean force into the contribution from each component in the system is also accomplished by using the TI method. The mean force decomposition profiles of $Na^+$ and $K^+$ demonstrate that the dehydration free energy barriers by water molecules near the channel entrance and inside the channel are completely compensated for by attractive electrostatic interactions between the cations and carbonyl oxygens in the nanotube. In the case of $Cl^-$, the dehydration free energy barriers are not eliminated by an interaction between the anion and the peptide nanotube, leading to the high free energy barriers in the PMF profile. Calculations of the coordination numbers of the ions with oxygen atoms pertaining to either water molecules or carbonyl groups in the peptide nanotube reveal that the stabilization of the cations in the midplane regions of the nanotube arises from the favorable interaction of the cations with the negatively charged carbonyl oxygens.

Isolation of Novel Alkalophilic Bacillus alcalophilus subsp. YB380 and the Characteristics of Its Yeast Cell Wall Hydrolase

  • Yeo, Ik-Hyun;Han, Suk-Kyun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.501-508
    • /
    • 1998
  • An alkalophilic mi.croorganism (strain YB380), which produces yeast cell wall hydrolase extracellulary, was isolated from Korean soil. The rod-shaped cells were 0.3~0.4 by 2~4${\mu}{\textrm}{m}$ long, motile, aerobic, gram-positive, and spore-forming. The color of the colony was light yellow. The temperature range for growth at pH 9.0 was 25 to $45{\circ}C, with optimum growth at $35{\circ}C. The pH range for growth at $35{\circ}C was 8 to 11 with an optimum pH of 9.0. Therefore, the strain YB380 is an obligate alkalophile. The 16S rRNA of strain YB380 has a 99% sequence similarity with that of Bacillus alcalophilus. On the basis of physiological properties, cell wall fatty acid composition, and phylogenetic analysis, we propose that the isolated strain is Bacillus alcalophilus. The yeast cell wall hydrolase from Bacillus alcalophilus subsp. YB380 has been purified and partially characterized. The molecular weight was estimated to be 27,000 daltons with an optimum temperature and pH of $60{\circ}C and 9.0, respectively. The N-terminal amino acid sequence of the enzyme was analyzed as Gln- Thr- Val- Pro- Trp- Gly- Ile- Asn- Arg- Val.

  • PDF

Purification and Characterization of a Thermostable Xylose (Glucose) Isomerase from Streptomyces chibaensis J-59

  • Joo, Gil-Jae;Shin, Jae-Ho;Heo, Gun-Young;Kwak, Yun-Young;Choi, Jun-Ho;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.113-118
    • /
    • 2001
  • Xylose (glucose) isomerase was purified to homogeneity from cell-extracts of Streptomyces chibaensis J-59 via ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, and gel filtration on Sephacryl S-300. The purified enzyme is a homotetramer with a native molecular mass of 180 kDa and a subunit molecular mass of 44 kDa. The amino acid N-terminal sequence of glucose isomerase from S. chibaensis J-59 was determined to be Ser-Tyr-Gln-Pro-Thr-Pro-Glu-Asp-Arg-Phe-Thr-Phe-Gly-Leu. The first 14 amino acids of the N-terminal sequence of the enzyme showed strong analogies with N-terminal sequences of glucose isomerase produced by other Streptomyces spp. The optimum pH and temperature for activity were 7.5 and 85, respectively. The purified enzyme required $Mg^{2+}$, $Co^{2+}$, and $Mn^{2+}$ for the activity, $Mg^{2+}$ being the most effective. The enzyme was not inhibited by $Ca^{2+}$, but was inhibited by $Hg^{2+}$, $Ag^+$, and $Cu^{2+}$. The $K_m$, $V_{max}$, and $k_{cat}$ values of S. chibaensis J-59 isomerase for glucose were 83 mM, 40.9 U/mg, and $1,843min^{-1}$, respectively. In the presence of $Co^{2+}$, cell-free enzymes retained 100% without loss of activities by the heat-treatment at $70^{\circ}C$ for 7 days. The enzyme retained 50% residual activity after heating at $85^{\circ}C$ for 13.5 h, at $90^{\circ}C$ for 126 min. The enzyme is more thermostable than any other glucose isomerases of Streptomyces spp.

  • PDF