• 제목/요약/키워드: Glial fibrillary acidic protein(GFAP)

Search Result 78, Processing Time 0.025 seconds

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

Characteristic MR Imaging Features and Serial Changes in Adult-Onset Alexander Disease: A Case Report (성인형 알렉산더병의 자기공명영상 소견 및 추적 관찰상의 변화: 증례 보고)

  • Ha Yun Oh;Ra Gyoung Yoon;Ji Ye Lee;Ohyun Kwon;Woong-Woo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.3
    • /
    • pp.736-744
    • /
    • 2023
  • Adult-onset Alexander Disease (AOAD) is a rare genetically determined leukoencephalopathy that presents with ataxia, spastic paraparesis, or brain stem signs including speech abnormalities, swallowing difficulties, and frequent vomiting. The diagnosis of AOAD is frequently proposed based on the findings on MRI. We demonstrate two cases (37-year-old female and 61-year-old female) with characteristic imaging findings and changes in follow-up MRI in patients with AOAD, which were confirmed via glial fibrillary acidic protein (GFAP) mutation analysis. On MRI, the typical tadpole-like brainstem atrophy and periventricular white matter abnormalities were noted. The presumptive diagnoses were made based on the typical MRI appearances and, subsequently, confirmed via GFAP mutation analysis. Follow-up MRI demonstrated the progression of atrophy in the medulla and upper cervical spinal cord. Our report could help raise awareness of characteristic MRI findings of AOAD, thus helping clinicians use GFAP analysis for AOAD diagnosis confirmation.

ORGANOPHOSPHATE-INDUCED BRAIN DAMAGE: NECROSIS, APOPTOSIS AND GFAP EXPRESSION

  • Kim, Yun-Bae;Hur, Gyeung-Baeng;Phi, Taek-San;Cheon, Ki-Cheol;Kim, Wang-Soo;Yeon, Gyu-Baek
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.123-123
    • /
    • 2001
  • The distribution of necrotic and apoptotic neural cells, and expression of astrocytic glial fibrillary acidic protein (GFAP) in the brain of rats poisoned intraperitoneally with diisopropylfluorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg), which are centrally inactive, were treated intramuscularly 30 min and 10 min, respectively, before diisopropylfluorophosphate (4 - 10 mg/kg) poisoning to reduce the mortality.(omitted)

  • PDF

Influence of Molarless Condition on the Hippocampal Formation in Mouse: a Histological Study (구치부 치관삭제가 생쥐 해마복합체에 미치는 영향에 관한 조직학적 연구)

  • Kim, Yong-Chul;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • The decrease of masticatory function caused by tooth loss leads to a decrease of cerebral blood flow volume resulting in impairment of cognitive function and learning memory disorder. However, the reduced mastication-mediated morphological alteration in the central nervous system (CNS) responsible for senile deficit of cognition, learning and memory has not been well documented. In this study, the effect of the loss of the molar teeth (molarless condition) on the hippocampal expression of glial fibrillary acidic protein (GFAP) protein was studied by immunohistochemical techniques. The results were as follows : 1. The molarless mice showed a lower density of pyramidal cells in the cornu ammonis 1 (CA1) and dentate gyrus (DG) region of the hippocampus than control mice. 2. Immunohistochemical analysis showed that the molarless condition enhanced the time-dependent increase in the cell density and hypertrophy of GFAP immunoreactivity in the CA1 region of the hippocampus. The molarless condition enhanced an time-dependent decrease in the number of neurons in the hippocampal formation and the time-dependent increase in the number and hypertrophy of GFAP-labeled cells in the same region. The data suggest a possible link between reduced mastication and histological changes in hippocampal formation that may be one risk factor for senile impairment of cognitive function and spatial learning memory.

Morphological Analyses on Retinal Glial Responses to Glaucomatous Injury Evoked by Venous Cauterization

  • Lee, Ji-Yeon;Shin, Ji-Man;Chun, Myung-Hoon;Oh, Su-Ja
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Retinal glial responses to hypertensive glaucomatous injury were spatiotemporally surveyed. Retinas as a whole or vertical sections were processed for anti-glial fibrillary acidic protein (GFAP), anti-Iba1, anti-nerve growth factor (NGF), and anti-tumor necrosis factor (TNF)-${\alpha}$ immunohistochemistry for confocal microscopic analyses. The optic nerve head of paired controls was processed for electron microscopy. GFAP positive astrocytes appeared in the nerve fiber layer in the glaucomatous and control retinas, changing from fine protoplasmic to stout fibrous parallel to glaucomatous duration. Iba1 positive microglia appeared in both retinas, and enormous reaction appeared at the latest glaucomatous. M$\ddot{u}$ller reaction detected by GFAP reactivity expanded from the end feet to whole profile following to duration in the glaucomatous. NGF reactivity expended from the end feet to the proximal radial processes of the M$\ddot{u}$ller cells in both retinas according to glaucomatous duration. TNF-${\alpha}$ immunoreactivity in the nerve fiber layer was stronger in both the glaucomatous and controls than in the normal, and exceptionally at the latest glaucomatous was even lower than the normal. The astrocytes in the optic nerve head are interconnected with each other via gap junction. These results demonstrate that astrocyte reaction propagates to the contralateral via physical links, and TNF-${\alpha}$ is correlated with NGF production for neuroprotection in response to hypertensive glaucomatous injury.

Alexander Disease

  • Kang, Ji Hae;Hong, Seung Jee;Kim, Doo-Kwun
    • Journal of Genetic Medicine
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 2013
  • Alexander disease (ALXD) is a rare demyelinating disease of the white matter of the brain that is caused by a mutation in the glial fibrillary acidic protein (GFAP) gene. The overexpression of GFAP in astrocytes induces a failure in the developmental growth of the myelin sheath. The neurodegenerative destruction of the myelin sheath of the white matter is accompanied by an accumulation of abnormal deposits of Rosenthal fibers in astrocytes, which is the hallmark of ALXD. The disease can be divided into four groups based on the onset age of the patients: neonatal, infantile, juvenile, or adult. Early-onset disease is more severe, progresses rapidly, and results in a shorter life span than late-onset cases. Magnetic resonance imaging and genetic tests are mostly used for diagnostic purposes. Pathological tests of brain tissue for Rosenthal fibers are definitive diagnostic methods. Therapeutic strategies are being investigated. Ceftriaxone, which is an enhancer of glial glutamate transporter (GLT-1) expression, is currently in clinical trials for the treatment of patients with ALXD. To date, there are no clinically available treatments. The cause, pathology, pathophysiology, inheritance, clinical features, diagnosis, and treatment of ALXD will be reviewed comprehensively.

Effects of treadmill running and swimming on expressions of glial fibrillary acidic protein and myelin basic protein in rat pups with maternal infection-induced cerebral palsy

  • Kim, Ki-Jeong;Seo, Jin-Hee;Sung, Yun-Hee;Kim, Bo-Kyun;Kim, Dae-Young;Lee, Sang-Hak;Kim, Chang-Ju;Kim, Young-Pyo
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.3
    • /
    • pp.203-209
    • /
    • 2009
  • Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brains. PVL is closely associated with cerebral palsy (CP). It has been suggested that maternal or placental infection can induce damage to the neonatal brains. In the present study, we investigated the effects of treadmill running and swimming of rat pups on the GFAP and MBP expressions in the brains of rat pups with maternal lipopolysaccharide (LPS)-induced CP. The rats were divided into the six groups for experiment 1: the control group, the control with mild exercise group, the control with moderate exercise group, the LPS-treated group, the LPS-treated with mild exercise group, and the LPS-treated with moderate exercise group (n=6 in each group). The rats in the running groups were forced to run on a motorized treadmill for 30 min 5 times a week for 4 weeks. For experiment 2, the rats were divided into four groups: the control group, the LPS-treated group, the LPS-treated with swimming group, and the LPS-treated with treadmill running group (n = 5 in each group). The rats in the swimming group were made to swim for 30 min once a day for 5 times per week during 2 weeks. The rats in the treadmill running group were made to run for 30 min once a day for 5 times per week during 2 weeks. The present results showed that intracervical maternal LPS injection during pregnancy significantly increased GFAP expression in the striatum and significantly decreased MBP expression in the corpus callosum of rat pups. The present results also showed that treadmill running and swimming significantly suppressed GFAP expression and significantly enhanced MBP expression in the brains of rat pups with maternal LPS-induced CP. This effect of treadmill running was shown as equally both in the mild-intensity exercise and in the moderate-intensity exercise. The present study revealed that exercise, both the treadmill running and swimming, is effective for the treatment of astrogliosis and hypomyelination associated with CP. Here in this study, we showed that treadmill running and swimming are effective for alleviating the detrimental effects of CP.

Seizure-related Encephalopathy in Rats Intoxicated with Diisopropylfluorophosphate

  • Kim, Yun-Bae;Hur, Gyeung-Haeng
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • The incidence and distribution of necrotic and apoptotic neural cells, and activated astrocytes in the brain of rats intoxicated intra peritoneally with diisopropylfluorophosphate were investigated. Pyridostigmine bromide (0.1 mg/kg) and atropine methylnitrate (20 mg/kg) were pretreated intramuscularly 30 min and 10 min, respectively, prior to diisopropylfluorophosphate (4-10 mg/kg) administration. Diisopropylfluorophosphate induced severe limbic seizures, early necrotic and delayed apoptotic brain injuries, and rapid astrocytic responses. The necrosis, which was closely related to seizure intensity, was observed as early as 1 hr after intoxication predominently in hippocampal pyramidal cells, cerebellar Purkinje cells and neurons in pyriform/entorhinal cortices, showing malacia of neurophils. In contrast, apoptosis started to appear 12 hr after intoxication in neurons in thalamus, amygdala and neocortex, and ephendymal cells surrounding the 4th ventricle. Since marked apoptosis was induced in rats exhibiting relatively-low seizure intensity, the degree of necrosis and apoptosis was shifted to each type of injury according to the seizure intensity. Activated astrocytes, observed within 1 hr along the limbic system, were suggested to affect the neural injury patterns by producing high level of nitric oxide. However, the distribution of activated astrocytes was not in parallel with those of necrotic or apoptotic injuries, implying that the astrocytic responses resulted from seizure activity rather than neural injuries. Furthermore, astrocytes in malacic tissues disappeared during the severe limbic seizures. Therefore, it would be one of the cautionary notes on the expression of glial fibrillary acidic protein in astrocytes as a biochemical marker of brain injuries following acute exposure to organophosphates.

  • PDF

Intravenous Administration of Substance P Attenuates Mechanical Allodynia Following Nerve Injury by Regulating Neuropathic Pain-Related Factors

  • Chung, Eunkyung;Yoon, Tae Gyoon;Kim, Sumin;Kang, Moonkyu;Kim, Hyun Jeong;Son, Youngsook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.259-265
    • /
    • 2017
  • This study aimed to investigate the analgesic effect of substance P (SP) in an animal model of neuropathic pain. An experimental model of neuropathic pain, the chronic constriction injury (CCI) model, was established using ICR mice. An intravenous (i.v.) injection of SP (1 nmole/kg) was administered to the mice to examine the analgesic effects of systemic SP on neuropathic pain. Behavioral testing and immunostaining was performed following treatment of the CCI model with SP. SP attenuated mechanical allodynia in a time-dependent manner, beginning at 1 h following administration, peaking at 1 day post-injection, and decaying by 3 days post-injection. The second injection of SP also increased the threshold of mechanical allodynia, with the effects peaking on day 1 and decaying by day 3. A reduction in phospho-ERK and glial fibrillary acidic protein (GFAP) accompanied the attenuation of mechanical allodynia. We have shown for the first time that i.v. administration of substance P attenuated mechanical allodynia in the maintenance phase of neuropathic pain using von Frey's test, and simultaneously reduced levels of phospho-ERK and GFAP, which are representative biochemical markers of neuropathic pain. Importantly, glial cells in the dorsal horn of the spinal cord (L4-L5) of SP-treated CCI mice, expressed the anti-inflammatory cytokine, IL-10, which was not seen in vehicle saline-treated mice. Thus, i.v. administration of substance P may be beneficial for improving the treatment of patients with neuropathic pain, since it decreases the activity of nociceptive factors and increases the expression of anti-nociceptive factors.

Meningeal Solitary Fibrous Tumor

  • Lee, Jong-Myong
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.232-234
    • /
    • 2005
  • We report a rare case of a patient with meningeal solitary fibrous tumor. A 60-year-old woman presented with right leg monoparesis. Brain magnetic resonance imaging demonstrates a well enhancing huge mass, located in left parietal lobe. Cerebral angiography demonstrating increased vascularity in area of the tumor, which had feeder vessels extending from the internal carotid artery and external carotid artery. A presumptive diagnosis of meningioma or hemangiopericytoma was considered. At surgery, the consistency was firm and had destroyed the dura and skull. A gross total resection was performed. Immunohistochemically, tumor was strongly, and widely, positive for CD34 and vimentin. There was no staining for epithelial membrane antigen(EMA), S-100 protein, cytokeratin, and glial fibrillary acidic protein (GFAP). Differential diagnosis of intracranial solitary fibrous tumor includes fibroblastic meningioma, meningeal hemangiopericytoma, neurofibroma, and schwannoma.