• 제목/요약/키워드: Glial cell line-derived neurotrophic factor

검색결과 14건 처리시간 0.026초

허쉬슈프렁병 환아의 무신경절 장관에서 Neural Cell Adhesion Molecule (NCAM) 과 Glial Cell Line-Derived Neurotrophic Factor (GDNF)의 발현 (Expression of Neural Cell Adhesion Molecule (NCAM) and Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Aganglionic Bowel of Hirschsprung's Disease)

  • 오정탁;한애리;손석우;최승훈;한석주;황의호;양우익
    • Advances in pediatric surgery
    • /
    • 제7권1호
    • /
    • pp.15-20
    • /
    • 2001
  • The pathophysiology of Hirschsprung's disease (HD) is not fully understood, but recent studies have disclosed that neural cell adhesion molecule (NCAM) and glial cell line-derived neurotrophic factor (GDNF) play important roles in the formation of aganglionic bowel of Hirschsprung's disease. To evaluate the roles of NCAM and GDNF in HD, immunohistochemical analysis was performed using formalin-fixed and paraffin-embedded tissue sections. On the basis of the results, we tried to evaluate them as diagnostic markers. The specimens were obtained from 7 patients with HD who underwent modified Duhamel operation. The diagnosis was based on the clinical findings and the absence of ganglion cells in the nerve plexuses by routine microscopy. NCAM immunoreactivity was found in the nerve plexuses and scattered nerve fibers in the smooth muscle layers of ganglionic segments. In aganglionic segments, the number of NCAM positive nerve fibers in the smooth muscle layers was significantly reduced compared with ganglionic segments. In two cases the nerve plexuses in aganglionic segments, NCAM was negligible. The smooth muscle cells showed diffuse immunoreactivity for GDNF and the staining intensity was not different in the aganglionic and ganglionic segments. However, higher expression of GDNF in the nerve plexus of the ganglionic segments was noted comparing to aganglionic segments. These data suggest that both NCAM and GDNF may play important roles in pathogenesis of Hirschsprung's disease and immunohistochemical staining for NCAM can be used as an ancillary diagnostic tool for HD.

  • PDF

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

Regulation of BDNF release in dopaminergic neurons

  • 전홍성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Effects of Fetal Mesencephalic Cell Grafts on the Intrastriatal 6-hydroxydoapmine Lesioned Rats

  • Joo, Wan Seok;Nam, Eun-Joo;Im, Heh-ln;Jung, Jin-Ah;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.245-251
    • /
    • 2004
  • The effects of fetal mesencephalic cell grafts on the restoration of nigrostriatal dopaminergic function were studied in the intrastriatal 6-hydroxydopamine-lesioned rats. Four weeks after lesioning, transplantation of ventral mesencephalic cells from embryonic day 14 fetuses showed the number of tyrosine hydroxylase (TH) positive cells and fiber outgrowth in the grafted striatum, and significantly ameliorated symptomatic motor behavior of the animals, as determined by apomorphine-induced rotation. Furthermore, in substantia nigra pars compacta (SNc), the numbers of TH + cells and fibers were markedly restored. Dopamine content of ipsilateral SNc was close to that of contralateral SNc $(91.9{\pm}9.8%)$ in the transplanted animals, while the ratio was approximately 32% in sham-grafted animals. These results indicate that grafted cells restored the activity for the dopaminergic neurons located in SNc, although they were transplanted into striatum. In addition, we showed that the implanted fetal cells expressed high level of glial cell line-derived neurotrophic factor (GDNF), suggesting that the transplanted fetal cells might serve as a dopamine producer and a reservoir of neurotrophic factors. These results may be helpful in consideration of the therapeutic transplantation at early stage of PD.

Glial Cell Line-Derived Neurotrophic Factor, S-100 Protein and Synaptophysin Expression in Biliary Atresia Gallbladder Tissue

  • Gurunluoglu, Semra;Ceran, Canan;Gurunluoglu, Kubilay;Kocbiyik, Alper;Gul, Mehmet;Yildiz, Turan;Bag, Harika Gozukara;Gul, Semir;Tasci, Aytac;Bayrakci, Ercan;Akpinar, Necmettin;Cin, Ecem Serbest;Ates, Hasan;Demircan, Mehmet
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권2호
    • /
    • pp.173-186
    • /
    • 2021
  • Purpose: Biliary atresia (BA) is a disease that manifests as jaundice after birth and leads to progressive destruction of the ductal system in the liver. The aim of this study was to investigate histopathological changes and immunohistochemically examine the expression of glial cell line-derived neurotrophic factor (GDNF), synaptophysin, and S-100 protein in the gallbladder of BA patients. Methods: The study included a BA group of 29 patients and a control group of 41 children with cholecystectomy. Gallbladder tissue removed during surgery was obtained and examined immunohistochemically and histopathologically. Tissue samples of both groups were immunohistochemically assessed in terms of GDNF, S-100 protein, and synaptophysin expression. Expression was classified as present or absent. Inflammatory activity assessment with hematoxylin and eosin staining and fibrosis assessment with Masson's trichrome staining were performed for tissue sample sections of both groups. Results: Ganglion cells were not present in gallbladder tissue samples of the BA group. Immunohistochemically, GDNF, synaptophysin, and S-100 expression was not detected in the BA group. Histopathological examination revealed more frequent fibrosis and slightly higher inflammatory activity in the BA than in the control group. Conclusion: We speculate that GDNF expression will no longer continue in this region, when the damage caused by inflammation of the extrahepatic bile ducts reaches a critical threshold. The study's findings may represent a missing link in the chain of events forming the etiology of BA and may be helpful in its diagnosis.

Epigenetic Regulation in the Brain after Spinal Cord Injury : A Comparative Study

  • Park, Bit-Na-Ri;Kim, Seok Won;Cho, Sung-Rae;Lee, Ji Yong;Lee, Young-Hee;Kim, Sung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권6호
    • /
    • pp.337-341
    • /
    • 2013
  • Objective : After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. Methods : Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. Results : The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). Conclusion : These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권3호
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

고집적어레이 기반의 비교유전체보합법(CGH)을 통한 신경아세포종 Neuro2a 세포의 유전체이상 분석 (High Resolution Genomic Profile of Neuro2a Murine Neuroblastoma Cell Line by Array-based Comparative Genomic Hybridization)

  • 도진환;김인수;고현명;최동국
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.449-456
    • /
    • 2009
  • 신경아세포종은 미분화된 신경외배엽 세포로부터 유래한 신경능세포에 의해 형성된 소아기에 보는 가장 많이 발생하는 악성 종양 중 하나이다. 신경아세포종인 Neuro-2a 세포는 신경세포의 분화, 세포사 억제 효능, 세포독성 검정 등에 활용되고 있다. Neuro-2a 역시 다른 신경아세종과 같이 염색체 변이를 가지고 있지만, 이에 대해 고밀도의 게놈수준에서 염색체 변이에 대해 보고된 바가 없다. 본 연구에서는 고집적 마이크로어레이(최소 43,000 개의 코딩, non-코딩 유전자 서열이 집적된 마이크로어레이)기반의 비교유전체보합법을 활용하여, 고해상도의 Neuro-2a 유전체 이상을 분석하였다. 마이크로 어레이 데이터는 Hidden Markov Model을 활용하여, 유전체 변이를 double loss, single loss, normal, single gain 그리고 amplification으로 나누어 분석하였다. Neuro2a는 MYCN 유전자의 증폭은 관찰되지 않았고, GDNF, BDNF, NENF등의 neurotrophic factor 가운데 NENF의 gain 현상이 관찰 되었다. 염색체의 이상은 4,8,10,11,15번에서 발견되었으며, 염색체 3,17,18,19에서는 전부 20개 미만의 염색체 이상이 발견되었다. 염색체 이상이 연속적으로 일어난 부위 중 gain으로서 가장 긴 부분은 Chr8:8,427,841-35,162,415의 약 26.7 Mb이며, single loss로서 가장 긴 곳은 Chr4:73,265,785-88,374,165의 약 15.1 Mb였다. 염색체의 위치는 UCSC 데이터베이스 (UCSC mm8, NCBI Build 36)에 근거하였다.

Hirschsprung's Disease: Etiology and Pathophysiology

  • 이명덕
    • Advances in pediatric surgery
    • /
    • 제8권1호
    • /
    • pp.41-47
    • /
    • 2002
  • 장 운동은 장근 및 점막하 신경총으로 구성된 내인성 신경계와 외인성 신경계가 합세하여 균형을 이루면서 장관이 팽창하면 상부는 수축하고 하부는 이완되어 장 내용물이 하방으로 이 동하는 운동이 연속적으로 이어지는 것이다. 신경절 세포가 없으면 내인성 신경계 억제작용 매체인 NO의 결손으로 평활근이 이완되지 않을 뿐더러 외인성 신경계 작용이 장벽에 현저히 증가되어 평소의 2-3배가 되는데 특히 adrenergic 계가 더 작용이 강하여 장벽 긴장도가 증가된 것이 무신경절 장관에서 나타나는 장 운동장애 현상의 병태생리로 설명되고 있다. 이러한 신경총의 부재는 NCC의 이동, 정착 및 성숙에 관여하는 여러 인자들의 복합적인 병적 작용 발현으로 일어나는 발생학적인 현상이며, 이러한 각종 인자들의 결함은 이와 관련된 염색체 혹은 유전자들의 변이 현상에 의한 것으로 밝혀짐에 따라 유전적인 요인들이 깊이 내재되어 있는 것이 하나씩 증명되어가고 있는 단계라고 말 할 수 있다. 지금까지는 HD와 동반되어 나타나는 이러한 현상들을 밝혀 나가고 있는 단계에 불과하며, 이러한 분자생물학적인 지식을 기초로 한다고 하여도 아직은 발병 예방이나 유전적인 치료를 고려할 수 있는 수준에는 미치지 못하는 실정이다.

  • PDF