DOI QR코드

DOI QR Code

High Resolution Genomic Profile of Neuro2a Murine Neuroblastoma Cell Line by Array-based Comparative Genomic Hybridization

고집적어레이 기반의 비교유전체보합법(CGH)을 통한 신경아세포종 Neuro2a 세포의 유전체이상 분석

  • Do, Jin-Hwan (HumanGenome Center,Institute of MedicalScience, University of Tokyo) ;
  • Kim, In-Su (Departmentof Biotechnology, Konkuk University) ;
  • Ko, Hyun-Myung (Departmentof Biotechnology, Konkuk University) ;
  • Choi, Dong-Kug (Departmentof Biotechnology, Konkuk University)
  • 도진환 (일본 동경대학 인간유전체센터) ;
  • 김인수 (건국대학교 생명과학부 생명공학과) ;
  • 고현명 (건국대학교 생명과학부 생명공학과) ;
  • 최동국 (건국대학교 생명과학부 생명공학과)
  • Published : 2009.04.30

Abstract

Murine Neuro-2a (N2a) cells have been widely used for the investigation of neuronal differentiation, trophic interaction and neurotoxic effects of various compounds and their associated mechanisms. N2a cells have many genomic variations such as gains or losses in DNA copy number, similar to other neuroblastoma cells, and no systematic or high-resolution studies of their genome-wide chromosomal aberrations have been reported. Presently, we conducted a systematic genome-wide determination of chromosomal aberrations in N2a cells using a high-throughput, oligonucleotide array-based comparative genomic hybridization (oaCGH) technique. A hidden Markov Model was employed to assign each genomic oligonucleotide to a DNA copy number state: double loss, single loss, normal, gain, double gain and amplification. Unlike most neuroblastoma cells, Mycn amplification was not observed in N2a cells. In addition, these cells showed gain only in the neuron-derived neurotrophic factor (NF), while other neurotrophic factors such as glial line-derived NF and brain-derived NF presented normal copy numbers. Chromosomes 4, 8, 10, 11 and 15 displayed more than 1000 aberrational oligonucleotides, while chromosomes 3, 17, 18 and 19 displayed less than 20. The largest region of gain was located on chromosome 8 and its size was no less than 26.7 Mb (Chr8:8427841-35162415), while chromosome 4 had the longest region of single deletion, with a size of 15.1 Mb (Chr4:73265785-88374165).

신경아세포종은 미분화된 신경외배엽 세포로부터 유래한 신경능세포에 의해 형성된 소아기에 보는 가장 많이 발생하는 악성 종양 중 하나이다. 신경아세포종인 Neuro-2a 세포는 신경세포의 분화, 세포사 억제 효능, 세포독성 검정 등에 활용되고 있다. Neuro-2a 역시 다른 신경아세종과 같이 염색체 변이를 가지고 있지만, 이에 대해 고밀도의 게놈수준에서 염색체 변이에 대해 보고된 바가 없다. 본 연구에서는 고집적 마이크로어레이(최소 43,000 개의 코딩, non-코딩 유전자 서열이 집적된 마이크로어레이)기반의 비교유전체보합법을 활용하여, 고해상도의 Neuro-2a 유전체 이상을 분석하였다. 마이크로 어레이 데이터는 Hidden Markov Model을 활용하여, 유전체 변이를 double loss, single loss, normal, single gain 그리고 amplification으로 나누어 분석하였다. Neuro2a는 MYCN 유전자의 증폭은 관찰되지 않았고, GDNF, BDNF, NENF등의 neurotrophic factor 가운데 NENF의 gain 현상이 관찰 되었다. 염색체의 이상은 4,8,10,11,15번에서 발견되었으며, 염색체 3,17,18,19에서는 전부 20개 미만의 염색체 이상이 발견되었다. 염색체 이상이 연속적으로 일어난 부위 중 gain으로서 가장 긴 부분은 Chr8:8,427,841-35,162,415의 약 26.7 Mb이며, single loss로서 가장 긴 곳은 Chr4:73,265,785-88,374,165의 약 15.1 Mb였다. 염색체의 위치는 UCSC 데이터베이스 (UCSC mm8, NCBI Build 36)에 근거하였다.

Keywords

References

  1. Andersson, R., C. E. Bruder, A. Piotrowski, U. Menzel, H. Nord, J. Sandgren, T. R. Hvidsten, T. Diaz de Stahl, J. P. Dumanski, and J. Komorowski. 2008. A segmental maximum a posteriori approach to genome-wide copy number profiling. Bioinformatics 24, 751-758 https://doi.org/10.1093/bioinformatics/btn003
  2. Aoyama, M., K. Asai, T. Shishicura, T. Kawamoto, T. Miyachi, T. Yocoi, H. Togari, Y. Miura, T. Kato, and A. Nakagawara. 2000, There are different expressions of BDNF and its variants between human neuroblastoma with favorable prognoses and with unfavorable prognoses. Soc. Neurosci. Abstr. 26(Part 2), 2120
  3. Brodeur, G. M. , C. Azar, M. Brother, J. Hiemstra, B. Kaufman, H. Marshall, J. Moley, A. Nakagawara, R. Saylors, N. Scavarda, S. Schneider, J. Wasson, P. White, R.Seeger, T. Look, and R. Castleber. 1992. Neuroblastoma: Effect of genetic factors on biology and treatment. Cancer 70, 1685-1694 https://doi.org/10.1002/1097-0142(19920915)70:4+<1685::AID-CNCR2820701607>3.0.CO;2-H
  4. Chao, M. V. 1992. Neurotrophin receptors: a window into neuronal differentiation. Neuron 9, 583-593 https://doi.org/10.1016/0896-6273(92)90023-7
  5. Do, J. H. , I. S. Kim, T. K. Park, and D. K. Choi. 2007. Genome-wide examination of chromosomal aberrations in neuroblastoma SH-SY5Y cells by array-based comparative genomic hybridization. Mol. Cells 24, 105-112
  6. Gauvain, J. L. and C. H. Lee. 1992. MAP estimation of continuous density HMM: theory and applications. In DARPA Sp. And Nat. Lang. Workshop. Harriman, New York
  7. Johnson, V. J., S. H. Kim, and R. P. Sharma. 2005. Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol. Sci. 83, 329-339 https://doi.org/10.1093/toxsci/kfi028
  8. Konger, P., G. Barbany, C. Dominici, M. A. Castello, G. Raschella, and H. Persson. 1993. Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res. 53, 2044-2050
  9. Lepage, K. T., R. W. Dickey, W. H. Gerwick, E. L. Jester, and D. Murray. 2005. On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Crit. Rev. Neurobiol. 17, 27-50 https://doi.org/10.1615/CritRevNeurobiol.v17.i1.20
  10. Li, X. -H., D. X. D. -X. Long, W. Li, and Y. -J. Wu. 2007. Different mechanisms of lysophosphatidylcholine-induced Ca2+ mobilization in N2a mouse and SH-SY5Y human neuroblastoma cells. Neurosci. Lett. 424, 22-26 https://doi.org/10.1016/j.neulet.2007.07.020
  11. Nakagawara, A., M. Arima, C. G. Azar, N. J. Scavarda, and G. M. Brodeur. 1992. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res. 52, 1364-1368
  12. Nakagawara, A., C. G. Azar, N. J. Scavarda, and G. M. Brodeur. 1994. Expression and function of TRK-B and BNDF in human neuroblastomas. Mol. Cell Biol. 14, 759-767
  13. Sakaguchi, M., K. Murayama, K. Yabe, M. Satoh, M. Takeuchi, and E. Matsumura. 1998. Beta-casomorphin-5 stimulates neurite outgrowth in a mouse neuroblastoma cell line (Neuro-2a). Neurosci. Lett. 251, 97-100 https://doi.org/10.1016/S0304-3940(98)00500-X
  14. Snider, W. D. 1994. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627-638 https://doi.org/10.1016/0092-8674(94)90048-5
  15. Tonini, G. P. 1993. Neuroblastoma: The result of multistep transformation? Stem Cells 11, 276-282 https://doi.org/10.1002/stem.5530110404
  16. van de Wiel, M. A., K. I. Kim, S. J. Vosse, W. N. van Wieringen, S. M. Wilting, and B. Ylstra. 2007. CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics 23, 892-894 https://doi.org/10.1093/bioinformatics/btm030
  17. Ylstra, B., P. van den Ijssel, B. Carvalho, R. H. Brakenhoff, and G. A. Meijer. 2006. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 34, 445-450 https://doi.org/10.1093/nar/gkj456
  18. Zhang, X., A. S. Vincent, B. Halliwell, and K. P. Wong. 2004. A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J. Biol. Chem. 279, 43035-43045 https://doi.org/10.1074/jbc.M402759200