• Title/Summary/Keyword: GlcNAc

Search Result 112, Processing Time 0.026 seconds

Physiological roles of N-acetylglucosaminyltransferase V (GnT-V) in mice

  • Miyoshi, Eiji;Terao, Mika;Kamada, Yoshihiro
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.554-559
    • /
    • 2012
  • Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), a glycosyltransferase encoded by the Mgat5 gene that catalyzes the formation of ${\beta}1$,6GlcNAc (N-acetylglucosamine) branches on N-glycans, is thought to be associated with cancer growth and metastasis. Overexpression of GnT-V in cancer cells enhances the signaling of growth factors such as epidermal growth factor by increasing galectin-3 binding to polylactosamine structures on receptor N-glycans. In contrast, GnT-V deficient mice are born healthy and lack ${\beta}1$,6GlcNAc branches on N-glycans, but develop immunological disorders due to T-cell dysfunction at 12-20 months of age. We have developed Mgat5 transgenic (Tg) mice (GnT-V Tg mice) using a ${\beta}$-actin promoter and found characteristic phenotypes in skin, liver, and T cells in the mice. Although the GnT-V Tg mice do not develop spontaneous cancers in any organs, there are differences in the response to external stimuli between wild-type and GnT-V Tg mice. These changes are similar to those seen in cancer progression but are unexpected in some aspects. In this review, we summarize what is known about GnT-V functions in skin and liver cells as a means to understand the physiological roles of GnT-V in mice.

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Biochemical Characterization of a Glycosyltransferase Homolog from an Oral Pathogen Fusobacterium nucleatum as a Human Glycan-Modifying Enzyme

  • Kim, Seong-Hun;Oh, Doo-Byoung;Kwon, Oh-Suk;Jung, Jae-Kap;Lee, Yun-Mi;Ko, Ki-Sung;Ko, Jeong-Heon;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.859-865
    • /
    • 2008
  • Bacterial glycosyltransferases have drawn growing attention as economical enzymes for oligosaccharide synthesis, with their easy expression and relatively broad substrate specificity. Here, we characterized a glycosyltransferase homolog (Fnu_GT) from a human oral pathogen, Fusobacterium nucleatum. Bioinformatic analysis showed that Fnu_GT belongs to the glycosyltransferases family II. The recombinant Fnu_GT (rFnu_GT) expressed in Escherichia coli displayed the highest glycosylation activity when UDP-galactose (Gal) was used as a donor nucleotide-sugar with heptose or N-acetylglucosamine (GlcNAc) as an acceptor sugar. Interestingly, rFnu_GT transferred the galactose moiety of UDP-Gal to a nonreducing terminal GlcNAc attached to the trimannosyl core glycan, indicating its potential as an enzyme for human-type N-glycan synthesis.

Characterization of a Mucolipidosis Type II Mouse Model and Therapeutic Implication of Lysosomal Enzyme Enriched Fraction Derived from Placenta (뮤코지방증 2형 마우스 모델의 특징과 태반에서 추출한 리소좀 효소 투여의 결과)

  • Cho, Sung Yoon;Kim, Ki-Yong;Kim, Su Jin;Sohn, Young Bae;Maeng, Se Hyun;Kim, Chi Hwa;Ko, Ah-Ra;Song, Junghan;Yeau, Sung-Hee;Kim, Kyung-Hyo;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • I-cell disease (mucolipidosis type II; MIM 252500) and pseudo-Hurler polydystrophy (mucolipidosis type III; MIM 252600) are disorders caused by abnormal lysosomal transport in cells. The presence of numerous inclusion bodies in the cytoplasm of fibroblasts, a lack of mucopolysacchariduria, increased lysosomal enzyme activity in serum, and decreased GlcNAc-phosphotransferase activity are hallmark. Here, we attempted to investigate phenotypical and biochemical characteristics of the knockoutmouse of GlcNAc-phosphotransferase ${\alpha}/{\beta}$ subunits; in addition, we also attempted to determine whether the lysosome enriched fraction derived from placenta can be beneficial to phenotype and biochemistry of the knockout mouse.We found that the knockout mouse failed to thrive and had low bone density, as is the case in human. In addition, skin fibroblasts from the animal had the same biochemical characteristics, including increased lysosomal enzyme activity in the culture media, in contrast to the relatively low enzyme activity within the cells. Intravenous injection of the lysosome rich fraction derived from placenta into the tail vein of the animal resulted in a gain of weight, while saline injected animals didn't.In conclusion, our study demonstrated the phenotypical and biochemical similarities of the knockout mouse to a mucolipidosis type II patient and showed the therapeutic potential of the lysosome enriched fraction. We admit that a larger scale animal study will be needed; however, the disease model and the therapeutic potential of the lysosome enriched fraction will highlight the hope for a novel treatment approach to mucopolipidosis type II, for which no therapeutic modality is available.

  • PDF

Studies on the Residues of Carbamate Pesticide in Fruits and Vegetables (과일 및 야채의 Carbamate계 농약의 잔류량)

  • 이해금;최용순;최규열
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 1987
  • ABSTRACT-Agricultural products collected from the suburbs of Chuncheon in 1984 were analyzed for carbamate pesticides by GLC-NPD. O-tert-butyl phenyl methyl carbamate(BPMC) was detected in most samples and their residue levels in strawberry, tomato, cucumber, grape, apple and chinese cabbage were in the range of non-detectable to 0.2356 ppm(Av. 0.0539 ppm). 1- naphthyl methyl carbamate(N AC) were detected in cucumber, grape and chinese cabbage and their residue levels were in the range of non-detectable to 0.0265 ppm. O-cumeryl methyl carbamate(MIPC) was detected in only chinese cabbage and its residue levels were in the range of non-detectable to 0.0059 ppm. Detection frequencies of BPMC, MIPC and NAC in the chinese cabbage were higher than those the others.others.

  • PDF

Tandem Mass Spectrometry of N-linked Glycans from Human Immunoglobulin G (다중 질량 분석법을 이용한 인체 면역글로불린 G의 N-연결 글라이칸 분석)

  • Joo, Hwang-Soo;Kim, Yun-Gon;Jang, Kyoung-Soon;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.234-238
    • /
    • 2007
  • We used electrospary ionization ion trap tandem mass spectrometry (ESI-IT tandem MS) to structural elucidation of three different biantennary-type glycans having zero, one, two galactoses (G0, G1, G2). The highest fragment ion in the MS/MS spectra of three glycans was produced by 0,2-ring cleavage of fucose-linked N-acetylglucosamine (GlcNAc) in reducing end. The fragment ions both from precursor ions and 0,2-ring cleaved ions ($^{0.2}An$; n=5 for G0, n=6 for G1 and G2) were not overlapped each other. As results of $MS^n$ analyses, tandem fragmentation trees of each glycans were generated and 2,4-ring cleavages ($^{2.4}A_6$) were occurred in GlcNAc linked to reducing end GlcNAc. This structural elucidation and fragmentation study of N-linked glycans by tandem mass spectrometry can be applied to structural analysis of more complicated glycans.

Applications of Tandem Mass Spectrometry in the Structure Determination of Permethylated Sialic Acid-containing Oligosaccharides

  • Yoo, Eun-Sun;Yoon, In-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1347-1353
    • /
    • 2005
  • Sets of sialic acid-containing trisaccharides having different internal and terminal linkages have been synthesized to develop a sensitive method for analysis of the reducing terminal linkage positions. The trisaccharides, sialyl($\alpha$ 2-3)Gal($\beta$ 1-3)GalNAc and sialyl($\alpha$ 2-3)Gal($\beta$ 1-X)GlcNAc where X=3, 4 and 6, were synthesized and examined using electrospray ionization (ESI)-collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The compounds chosen for this study are related to terminal groups likely to be found on polylactosamine-like glycoproteins and glycolipids which occur on the surface of mammalian cells. The purpose of this study is to develop tandem mass spectrometral methods to determine detailed carbohydrate structures on permethylated or partially methylated oligosaccharides for future applications on biologically active glycoconjugates and to exploit a faster method of synthesizing a series of structural isomeric oligosaccharides to be used for further mass spectrometry and instrumental analysis.

The Central Concept for Chitin Catabolic Cascade in Marine Bacterium, Vibrios

  • Jung, Byung-Ok;Roseman, Saul;Park, Jae-Kweon
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The enzymatic hydrolysis of chitin has been studied for almost a century, and early work established that at least two enzymes are required, a chitinase that mainly yields the disaccharide N,N'-diacetylchitobiose, or $(GlcNAc)_2$, and a "chitobiase", or ${\beta}$-N-acetylglucosaminidase, which gives the final product G1cNAc. This pathway has not been completely identified but has remained the central concept for the chitin catabolism through the $20^{th}$ century1 including in marine bacteria. However, the chitin catabolic cascade is quite complex, as described in this review. This report describes three biologically functional genes involved in the chitin catabolic cascade of Vibrios in an attempt to better understand the metabolic pathway of chitin.

Detection of Early Intermediates of the Glycosylphosphatidylinositol anchor in Liquid-cultured Arabidopsis

  • Cheong, Jong-Joo;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.9-11
    • /
    • 2015
  • Tissue extracts were prepared from liquid-cultured Arabidopsis and reacted with UDP-[$^3H$]-GlcNAc. Phospholipid fractions were then extracted by butanol partitioning. Consecutive thin-layer chromatography identified two glycolipids sensitive to PI-specific phospholipase C, known as early intermediates in glycosylphosphatidylinositol anchor biosynthesis; phosphatidylinositol N-acetylglucosamine and phosphatidylinositol glucosamine.

O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression

  • Ali, Akhtar;Kim, Sung Hwan;Kim, Min Jun;Choi, Mee Young;Kang, Sang Soo;Cho, Gyeong Jae;Kim, Yoon Sook;Choi, Jun-Young;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.476-484
    • /
    • 2017
  • C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-${\kappa}B$ regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-${\kappa}B$ promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-${\kappa}B$ in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-${\kappa}B$ p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.