• Title/Summary/Keyword: Glass substrate

Search Result 1,662, Processing Time 0.027 seconds

Effect of Glass Additions on the Adhesion and Electrical Conductivity of Photoimageable Silver Paste

  • Lee, Eun-Heay;Heo, Yu-Jin;Kim, Hyo-Tae;Kim, Jong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • Anorthite forming glass frits in amounts up to 25 vol% of the silver powder were added to improve the adhesion between the conductor pattern formed by thick film photoimageable process and the low temperature co-fired ceramics (LTCC) substrate. The sheet resistance of the conductor pattern was raised from 0.13 ${\Omega}/{\square}$ to 2.25 ${\Omega}/{\square}$ as the volume percentage of glass frit increased up to 25 vol%. The adhesion strength was improved with this glass frit increase, but it decreased when the glass content exceeded 20 vol% which are possibly attributed to the liquid pool effect and the reduced fracture toughness in the interface between conductor and LTCC layer. The shrinkage of the width of the conductor pattern decreased with the addition of glass contents.

A Study on Cutting Behavior of Plate Glass Using a Piezoelectric Ceramics Actuator (압전 세라믹을 이용한 평판유리의 절단 거동에 관한 연구)

  • Lee K.W.;Jea T.J.;Choi S.D.;Jeong S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.249-250
    • /
    • 2006
  • Recently FPD(Flat Panel Display) is used in various field to display enormous information. So cutting technique of flat panel display is needed for producing variety display merchandises. In present, cutting methods of flat panel glass includes breaking process. But this process occurs many glass particles. This glass particles are directly related badness of merchandise and falling productivity. In this paper, to cut front substrate glass of LCD and to get optimized cutting condition are tried fur eliminating breaking process with developed glass cutting machine using a Piezoelectric ceramics actuator. It is known that the vibration of Piezoelectric Ceramic have effect in crack proceeding through the analysis of fracture section.

  • PDF

The Discussion of Glass Waveguide formed by ton-exchange (이온교환 방법에 의한 유리도파로 특성 고찰)

  • 박정일;김봉재;박태성;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.130-132
    • /
    • 1994
  • We fabricated Ag ion exchange glass waveguide. Generally, ion-exchange glass waveguide. are suitable for passive integrated optical components such as directional and star couplers. Its advantages include low loss, ease of fabrication, and low material cost. So, we faricated Ag ion-exchange glass waveguides in AgNO$_3$ melt solution from 2 mole %. And we used Sodalime glass as a substrate in the fabrication process. As the results, we observed multivalent ion-exchange in a typical sodalime glass. Diffusion coefficient and depth are predicted by actual experimental data of Stewart. The exchange rate in silver-ion-exchanged waveguides are compared to the exchange time of waveguide fabrication.

  • PDF

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Influence of Substrate Temperature of KLN Thin Film Deposited on Amorphoous Substrate (비정질 기판위에 증착한 KLN 박막의 기판온도에 의한 영향)

  • 박성근;최병진;홍영호;전병억;김진수;백민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The influences of substrate temperature were studied when fabricating KLN thin film on amorphous substrate using an rf-magnetron sputtering method. Investigating the vaporization temperature of the each element, the excess ratio of target and the optimum deposition conditions were effectively selected when thin filmizing a material which have elements with large difference fo vaporization temperature. In order to compensate K and Li which have lower vaporization temperatures than Nb, KLN target of composition excess with K of 60% and Li of 30% was used. KLN thin film fabricated on Corning 1737 glass substrate had single KLN phase above 58$0^{\circ}C$ of substrate temperature and crystallized to c-axis direction. The optimum conditions were rf power of 100W, process pressure of 150mTorr, and substrate temperature of $600^{\circ}C$.

  • PDF

Characteristic of ITO thin film with plasma surface treatment (플라즈마 표면 처리에 의한 ITO 박막 제작 특성)

  • Kim, Sang-Mo;Son, In-Hwan;Park, Sang-Joon;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.404-405
    • /
    • 2007
  • Tin-doped indium thin film is outstanding material among transparent Conductive Oxide (TCO) materials. ITO thin films show a low electrical resistance(<$10^{-4}\;[{\Omega}{\cdot}m]$) and high transmittance(>80%) in the visible range. ITO thin films usually have been deposited on the glass substrate. In order to apply flexible display, the substrate should have the ability to bend and be deposited without substrate heat. Also properties of ITO thin film depend on what kind of substrate. In this study, we prepared ITO thin film on the polycarbonate (PC) substrate by using Facing Target Sputtering (FTS) system. Before deposition of ITO thin film, PC substrate took plasma surface treatment. The electrical and surface properties of as-deposited thin films were investigated by Hall Effect measurement, UV/VIS spectrometer and the surface property of substrate is investigated by Contact angle measurement.

  • PDF

Fabrication of Low Temperature Cofiring Substrate Containing Fluorine by Water Swelling (Water Swelling을 이용한 Fluorine함유 저온소결 기판의 제조)

  • 윤영진;최정헌;이용수;강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • Glass composed of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ for the fabrication of green sheet was prepared by melting process, and glass ceramics was prepared by the process of nucleation and grystal growth for the glass of $Li_2$O.MgO. $MgF_2$.$SiO_2$.$B_2O_3$ system with Lithium fluorhectorite and Lithium boron fluorphlogopite crystal phase. Powderization of the glass ceramics was carried out by water swelling. The average particle size at this point was 2.574 $\mu\textrm{m}$. Slurry was prepared for green sheet using high viscous sol fabricated by water swelling, which shows cleavage phenomenon in prepared glass ceramics. The optimum ratio of powder to water for the tape casting was 18:100, and its viscosity was 11,000~14,000 cps.

  • PDF

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

COG (Chip On Glass) Bonding Technology for Flat Panel Display Using Induction Heating Body in AC Magnetic Field (교류자기장에 의한 유도가열체를 이용한 평판 디스플레이용 COG (Chip On Glass) 접속기술)

  • Lee Yoon-Hee;Lee Kwang-Yong;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.315-321
    • /
    • 2005
  • Chip-on-glass technology to attach IC chip directly on the glass substrate of flat panel display was studied by using induction heating body in AC magnetic field. With applying magnetic field of 230 Oe at 14 kHz, the temperature of an induction heating body made with Cu electrodeposited film of 5 mm${\times}$5 mm size and $600{\mu}m$ thickness reached to $250^{\circ}C$ within 60 seconds. However, the temperature of the glass substrate was maintained below $100^{\circ}C$ at a distance larger than 2 mm from the Cu induction heating body. COG bonding was successfully accomplished with reflow of Sn-3.5Ag solder bumps by applying magnetic field of 230 Oe at 14 kHz for 120 seconds to a Cu induction heating body of 5mm${\times}$5mm size and $600{\mu}m$ thickness.

  • PDF

Novel Deposition Technique of ZnO:Al Transparent Conduction Oxide Layer on Chemically Etched Glass Substrates for High-haze Textured Surface

  • Park, Hyeongsik;Pak, Jeong-Hyeok;Shin, Myunghoon;Bong, Sungjae;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.426.1-426.1
    • /
    • 2014
  • For high performance thin film solar cells, texturing surface, enhancing the optical absorptionpath, is pretty important. Textured ZnO:Al transparent oxide layer of high haze is commonly used in Si thin film solar cells. In this paper, novel deposition method for aluminum doped zinc oxide (ZnO:Al) on glass substrates is presented to improve the haze property. The broccoli structure of ZnO:Al layer was formed on chemically etched glass substrates, which showed high haze value on a wide wavelength range.The etching condition of the glass substrates can change not only the haze values of the ZnO:Al of in-situ growth but alsothe electrical and optical properties of the deposited ZnO:Al films.The etching mechanism of the glass substrate affecting on the surface morphology of the glass will be discussed, which resulted in variation of texture of ZnO:Al layer. The optical properties of substrate morphology were also analyzed with EDS and FTIR results. As a result, the high haze value of 85.4% was obtained in the wavelength range of 300 nm to 1100 nm. Furthermore, low sheet resistance of about 5~18 ohm/sq was achieved for different surface morphologies of the ZnO:Al films.

  • PDF