• 제목/요약/키워드: Glass material

검색결과 2,841건 처리시간 0.025초

보론함량에 따른 D-glass의 유전율 특성 (Preparation and Dielectric Behavior of D-Glass with Different Boron Contents)

  • 정보라;이지선;이미재;임태영;이영진;전대우;신동욱;김진호
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.39-42
    • /
    • 2017
  • E-glass (electrical glass) fiber is the widely used as a reinforced composite material of PCBs (printed circuit boards). However, E-glass fiber is not stable because it has a dielectric constant of 6~7. On the other hand, D-glass (dielectric glass) fiber has a low dielectric constant of 3~4.5. Thus, it is adaptable for use as a reinforcing material of PCBs. In this study, we fabricated D-glass compositions with low dielectric constant, and measured the electrical and optical properties. In the glass composition, the boron content was changed from 9 to 31 wt%. To confirm the dependence of the dielectric constant on melting properties, D-glass with 22 wt% boron was melted at $1550^{\circ}C$ and $1650^{\circ}C$ for 2hrs. The glass melted at $1650^{\circ}C$ had a lower dielectric constant than the glass melted at $1550^{\circ}C$. Therefore, the D-glass with boron of 9~31 wt% was fabricated by melting at $1650^{\circ}C$ for 2hrs, and transparent clear glass was obtained. We identified the non-crystalline nature of the glass using an XRD (x-ray diffractometer) graph. The visible light transmittance values depending on the boron contents were measured and found to be 88.6 % ~ 82.5 %. Finally, the dielectric constant of the D-glass with 31 wt% boron was found to have decreased from 4.18 to 3.93.

섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성 (Physical Properties of E-glass Fiber According to Fiberizing Temperature)

  • 이지선;이미재;임태영;이영진;전대우;현승균;김진호
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.

유리섬유 에폭시 복합재료의 정밀드릴가공 특성 (Precise Drilling characteristics of glass fiber epoxy composite material)

  • 김홍배
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.117-122
    • /
    • 1998
  • Glass fiber epoxy composite material is widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joint must be provided, which require precise machining. In this paper, the machinability of the glass fiber epoxy composite material was experimentally investigated. The results can be summarized as follows : 1. The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the glass fiber epoxy composite material is decreased as the drilling speed increased. 3. If the glass fiber epoxy composite material is drilling by the standard twist drill, then the hole recommand cutting condition is spindle speed 400∼600rpm, feed 40∼50mm/min.

  • PDF

An approach to a novel modelling of structural reinforced glass beams in modern material components

  • Foti, Dora;Carnimeo, Leonarda;Lerna, Michela;Sabba, Maria Francesca
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.173-188
    • /
    • 2022
  • In modern buildings, glass is considered a structurally unsafe material due to its brittleness and unpredictable failure behavior. The possible use of structural glass elements (i.e., floors, beams and columns) is generally prevented by its poor tensile strength and a frequent occurrence of brittle failures. In this study an innovative modelling based on an equivalent thickness concept of laminated glass beam reinforced with FRP (Fiber Reinforced Polymer) composite material and of glass plates punched is presented. In particular, the novel numerical modelling applied to an embedding Carbon FRP-rod in the interlayer of a laminated structural glass beam is considered in order to increase both its failure strength, together with its post-failure strength and ductility. The proposed equivalent modelling of different specimens enables us to carefully evaluate the effects of this reinforcement. Both the responses of the reinforced beam and un-reinforced one are evaluated, and the corresponding results are compared and discussed. A novel equivalent modelling for reinforced glass beams using FRP composites is presented for FEM analyses in modern material components and proved estimations of the expected performance are provided. Moreover, the new suggested numerical analysis is also applied to laminated glass plates with wide holes at both ends for the technological reasons necessary to connect a glass beam to a structure. Obtained results are compared with an integer specimen. Experimental considerations are reported.

Magnetic Contactor Upper Frame 사출성형시 유리섬유 배향에 따른 뒤틀림 변형에 관한 연구 (A study of warpage caused by glass fiber orientation in Injection Molding to Upper Frame of Magnetic Contactor in 85 AF)

  • 박진영;조해용;김길수;황한성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.766-771
    • /
    • 2000
  • As using of insulating material of plastic to industrial electric field, thermoset has been gradually substituted for thermoplastic. But changing the material with crystalline has some problem, which is strength or warpage, Especially getting a strength to endure inner pressure is necessary when arc is occurred. So we use the material that is composed of glass fiber to compensate strength. By the way as the reinforced glass-fiber material is used in injection molding, unstableness of dimension is appeared frequently and it is difficult to know warpage pattern. So this paper will be contributed to know warpage pattern of mold product that is upper frame of magnetic contactor caused by glass-fiber orientation with fixed gate-system, when glass-fiber reinforced material with classification of poly-amide is used in injection molding.

  • PDF

현대 실내공간디자인에 있어서 유리재료의 표현기법에 관한 연구 (A Study on the Representation Techniques of Glass Material in Contemporary Interior Space Design)

  • 김은정;홍관선
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2007년도 추계학술발표대회 논문집
    • /
    • pp.134-138
    • /
    • 2007
  • Presents age is diversified in all genres by fast development of information and digital, and expression of fixing is not. Architecture and interior space design is showing new paradigm through dematerializing, ex-formal, nonlinear. Glass material is expressing by various technique in space and outer skin to introduction of digital media and a high-tech technology. Expressive characteristics and Techniques of this glass material are showing form of homogenized life in this age, simulated life. Therefore, this study does theoretical investigation through dematerializing of glass material, and analyzes works after 2000. Wish to understand stream of indoor design of present age after analyzes expression special quality and technique of glass material that reflect age and make a study of symbolic expression characteristic.

  • PDF

사암계 석탄폐석을 활용한 E-glass fiber 조성의 유리 제조 및 특성 (Fabrication and characterization of glass with E-glass fiber composition by using silica-alumina refused coal ore)

  • 이지선;임태영;이미재;황종희;김진호;현승균
    • 한국결정성장학회지
    • /
    • 제23권4호
    • /
    • pp.180-188
    • /
    • 2013
  • 삼척도계지역의 탄광에서 석탄채굴시에 부산물로 발생되는 사암계 석탄폐석을 원료로 사용하여 E-glass fiber 조성의 유리를 제조하였다. 본 연구에서는 카본함량이 비교적 적은 실리카-알루미나질의 사암계 석탄폐석을 사용하였으며, 폐석의 투입량을 0~35 %까지 변화시켰다. 서로 다른 석탄폐석 투입량을 갖는 배치원료를 $1550^{\circ}C$에서 2시간 용융하여 E-glass조성을 갖는 투명하고 맑은 유리가 얻어졌고, 81~84 %의 높은 가시광투과율, $5.39{\sim}5.61{\times}10^{-6}/^{\circ}C$의 열팽창계수, 851~$860^{\circ}C$의 연화점을 나타내었다. 유리섬유 시편은 $1150^{\circ}C$에서 섬유인상장치를 통해 얻어졌고, 복합재료의 보강용 유리섬유로서 내화학성 시험과 기계적 특성평가를 위한 인장강도를 측정하였다. 그 결과 석탄폐석을 사용한 E-glass fiber의 특성이 석탄폐석을 사용하지 않은 보통 E-glass 섬유에 비해 충분히 양호한 특성을 나타내어 E-glass 섬유용 원료로서 석탄폐석의 활용가능성을 확인할 수 있었다.

붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구 (Fabrication and characterization of boron free E-glass fiber compositions)

  • 이지선;임태영;이요셉;이미재;황종희;김진호;현승균
    • 한국결정성장학회지
    • /
    • 제23권1호
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass 섬유는 항공기, 자동차, 레져기구의 복합재료 보강용으로 가장 널리 사용되는 유리섬유이다. 그러나 최근 E-glass 섬유의 원재료비 상승, 환경문제 및 화학적 저항성과 기계적 특성을 향상시키기 위해 산화붕소 함량을 8 %에서 0(제로)까지 감소시키는(소위 'Boron free E-glass'라고 불리는) 연구가 진행되고 있다. 본 연구에서는 'BF(Boron free E-glass)' 조성의 벌크유리와 섬유유리를 제조하고, 열적특성 및 광학적특성을 평가하였다. 5~10 %의 서로 다른 알루미나 함량을 갖는 배치를 $1550^{\circ}C$에서 2시간 용융하여 'BF(Boron free E-glass)'가 얻어졌고, 81~86 %의 높은 가시광투과율, $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$의 낮은 열팽창계수, $907{\sim}928^{\circ}C$의 연화점을 갖는 투명하고 맑은 유리가 얻어졌다. 'BF' 섬유 시편에 대한 화학적내구성 시험에 있어서는 알루미나 함량이 높아질수록 더 좋은 침식저항성을 나타냄을 확인할 수 있었다.

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • 제37권3호
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

Applicability Assessment of the Expanded Waste Glass Material as Planting Basis Using Ground-Based Remote Sensing

  • Hamamoto, R.;Gotoh, K.;Ikio, D.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.546-548
    • /
    • 2003
  • The expanded waste glass material is one of the recycling materials. We investigated whether the expanded waste glass material is useful as planting basis and effective as heat insulation. We examined the difference of the materials by using vegetation index and temperature. The combination of the improved soils and the improved glasses marked higher vegetation index than other mixture materials. Moreover, this combination material is excellent than other ones to heat insulation. Therefore, it suggests that the expanded waste glass material has high potential to be used as a material for planting basis.

  • PDF