• Title/Summary/Keyword: Glass based silica

Search Result 64, Processing Time 0.02 seconds

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

Occurrence and Cenesis of Perlite from the Beomgockri Group in Janggi Area (장기지역 범곡리층군에 부존되는 진주암의 산출상태와 생성관계)

  • Noh Jin Hwan;Hong Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.277-288
    • /
    • 2005
  • Perlite, a hydrated volcanic glass, occurs mainly as a bed-like body, and is distributed intermittently along the unconformity surface between the Beomgockri Group and its lower formations, viz. Janggi Group. The perlite is intimately associated with surrounding pumiceous welded tuff and rhyodacites in space and time. Compared to the typical perlite, the perlite is rather silica-poor and impure, and thus, includes lots of phenocrysts and rock fragments. Nearly the perlite is compositionally rather close to a pitchstone than a perlite in water contents. Petrographic comparison between perlite and associated volcanic to volcaniclastic rocks indicates that pumiceous welded tuff and rhyodacite seem to be Protolith of the Perlite. A Zr/$TiO_{2}$-Nb/Y diagram and field occurrence of perlite and their protolithic rocks also conforms the above interpretation. Kn addition, remnant vesicles in perlite strongly reflect that the precursor of perlitic glass appeared to be pumice fragment as well as volcanic glass. The perlite was diagenetically formed by way of a pervasive water-rock interaction at the deposition of the Manghaesan Formation in lacustrine environment. During perlitization, $SiO_{2}$ and alkali tend to be consistently depleted. Preexisting system of the Beomgockri Group based on the perlite formation should be corrected, because the perlite was formed diagenetically without lateral persistence in its occurrence.

Optoelectronic properties of the Metal-dielectric complex thin films for applying high sensitivity IR image sensors (고감도 적외선 이미지 센서 적용을 위한 금속-유전체 복합 박막의 광전자 특성)

  • Kim, Ye-Na;Kwon, Soon-Woo;Park, Seung-Jun;Kim, Woo-Kyug;Lee, Han-Young;Yoon, Dae-Ho;Yang, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.60-64
    • /
    • 2011
  • High sensitivity IR image sensors require materials characteristics with temperature coefficient of resistance (TCR) and IR range absorption. In this study, the metal-dielectric thermo sensitive films (MDTF) based on $(SiO_2)_x-(Ti)_y$ composition were deposited on substrates of germanium and glass by thermal evaporator. The $SiO_2$ : Ti mixture was made from the ratio of 9 : 1, 8 : 2, 7 : 3, 6 : 4, respectively. $(SiO_2)_x-(Ti)_y$ mixture powder was loaded on tungsten boat in evaporator and was 15.5 cm from the substrate. Resistance of $(SiO_2)_x-(Ti)_y$ in the range of 273~333K were measured as a function of temperature. Temperature coefficient of resistance (TCR) was calculated by the resistance variation. Under the various mixture ratios condition, it is possible to obtain $SiO_2$-Ti layers with resistance from units kilo-ohm to hundreds kilo-ohm. Finally, our results showed that Temperature coefficient of resistance (TCR) of these films varies from -1.4 to $-2.6%K^{-1}$.

The Moisture Absorption Properties of Liquid Type Epoxy Molding Compound for Chip Scale Package According to the Change of Fillers (충전재 변화에 따른 Chip Scale Package(CSP)용 액상 에폭시 수지 성형물 (Epoxy Molding Compound)의 흡습특성)

  • Kim, Whan-Gun
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.594-602
    • /
    • 2010
  • Since the requirement of the high density integration and thin package technique of semiconductor have been increasing, the main package type of semiconductor will be a chip scale package (CSP). The changes of diffusion coefficient and moisture content ratio of epoxy resin systems according to the change of liquid type epoxy resin and fillers for CSP applications were investigated. The epoxy resins used in this study are RE-304S, RE310S, and HP-4032D, and Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The micro-sized and nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these epoxy molding compound (EMC) according to the change of filler size. The temperature of glass transition (Tg) of these EMC was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these EMC according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these EMC were calculated in terms of modified Crank equation based on Ficks' law. An increase of diffusion coefficient and maximum moisture absorption ratio with Tg in these systems without filler can be observed, which are attributed to the increase of free volume with Tg. In the EMC with filler, the changes of Tg and maximum moisture absorption ratio with the filler content can be hardly observed, however, the diffusion coefficients of these systems with filler content show the outstanding changes according to the filler size. The diffusion via free volume is dominant in the EMC with micro-sized filler; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the EMC with nano-sized filler.